scispace - formally typeset
Search or ask a question
Author

Kenneth Walters

Bio: Kenneth Walters is an academic researcher from Aberystwyth University. The author has contributed to research in topics: Newtonian fluid & Rheometer. The author has an hindex of 31, co-authored 76 publications receiving 3347 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the simple Cross model is shown to be a useful empiricism for many non-Newtonian fluids, including those which have hitherto been thought to possess a yield stress.
Abstract: New experimental data obtained from constant stress rheometers are used to show that the yield stress concept is an idealization, and that, given accurate measurements, no yield stress exists. The simple Cross model is shown to be a useful empiricism for many non-Newtonian fluids, including those which have hitherto been thought to possess a yield stress.

582 citations

Journal ArticleDOI
TL;DR: In this article, the influence of small changes in corner geometry on flow characteristics in the case of elastic liquids flowing in various contraction geometries was considered and it was shown that it is very difficult to make generalizations from one geometry to another or from one type of non-Newtonian fluid to another.
Abstract: Consideration is given to the influence of small changes in corner geometry on flow characteristics in the case of elastic liquids flowing in various contraction geometries. Both Boger fluids and aqueous solutions of polyacrylamide are used to show that it is very difficult to make generalizations from one geometry to another or from one type of non-Newtonian fluid to another. Of major importance is the observation that the precise mechanism of vortex enhancement varies with the contraction ratio. For large contraction ratios, a re-entrant corner vortex (not present in a 4:1 contraction) is shown to have an important influence on the development of vortex enhancement.

166 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe experimental results on the extensional viscosity of mobile polymer solutions obtained from two instruments, the first being a commercial Spin Line Rheometer and the second a custom-built lubricated-die Converging Flow Rheometers.
Abstract: We describe experimental results on the extensional viscosity of mobile polymer solutions obtained from two instruments, the first being a commercial Spin Line Rheometer and the second a custom-built lubricated-die Converging Flow Rheometer. The interpretation of data in terms of Trouton ratios is facilitated by a simple analysis for the Generalized Newtonian Fluid model.

157 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used pressure measurements in contraction flows in determination of the extensional viscosity behavior of polymer solutions, and concluded that contraction flows provide a convenient means of determining the extension viscosities of shear-thinning polymer solutions.
Abstract: We consider the use of pressure measurements in contraction flows in the determination of the extensional viscosity behaviour of polymer solutions. The experimental data are interpreted on the basis of the recent theory of Binding. The resulting extensional viscosities are compared with those obtained from a commercial Spin Line Rheometer. We conclude that contraction flows provide a convenient means of determining the extensional viscosity of shear-thinning polymer solutions. The case is not so clear for constant viscosity Boger fluids. In the course of the experiments, it is shown that excess pressure losses in the contractions can be brought about by two distinct flow mechanisms in the case of Boger fluids. In the axisymmetric case, both vortex enhancement and excess pressure loss are observed, although there is not a strict one-to-one correlation between these phenomena. In the planar case, vortex enhancement is not conspicuously present, although there is still a substantial excess pressure loss at high flow rates. This excess must be associated with the ‘bulb’ flow field which essentially replaces the vortex-enhancement regime of the axisymmetric case.

131 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Book
01 Jan 1992
TL;DR: A theory aiming to describe their mechanical behavior must take heed of their deformability and represent the definite principles it obeys as mentioned in this paper, which is not the case in modern physics, since it concerns solely the small particles of matter.
Abstract: Matter is commonly found in the form of materials. Analytical mechanics turned its back upon this fact, creating the centrally useful but abstract concepts of the mass point and the rigid body, in which matter manifests itself only through its inertia, independent of its constitution; “modern” physics likewise turns its back, since it concerns solely the small particles of matter, declining to face the problem of how a specimen made up of such particles will behave in the typical circumstances in which we meet it. Materials, however, continue to furnish the masses of matter we see and use from day to day: air, water, earth, flesh, wood, stone, steel, concrete, glass, rubber, ... All are deformable. A theory aiming to describe their mechanical behavior must take heed of their deformability and represent the definite principles it obeys.

2,644 citations

Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an account of the development of the idea of yield stress for solids, soft solids and structured liquids from the beginning of this century to the present time.
Abstract: An account is given of the development of the idea of a yield stress for solids, soft solids and structured liquids from the beginning of this century to the present time. Originally, it was accepted that the yield stress of a solid was essentially the point at which, when the applied stress was increased, the deforming solid first began to show liquid-like behaviour, i.e. continual deformation. In the same way, the yield stress of a structured liquid was originally seen as the point at which, when decreasing the applied stress, solid-like behaviour was first noticed, i.e. no continual deformation. However as time went on, and experimental capabilities increased, it became clear, first for solids and lately for soft solids and structured liquids, that although there is usually a small range of stress over which the mechanical properties change dramatically (an apparent yield stress), these materials nevertheless show slow but continual steady deformation when stressed for a long time below this level, having shown an initial linear elastic response to the applied stress. At the lowest stresses, this creep behaviour for solids, soft solids and structured liquids can be described by a Newtonian-plateau viscosity. As the stress is increased the flow behaviour usually changes into a power-law dependence of steady-state shear rate on shear stress. For structured liquids and soft solids, this behaviour generally gives way to Newtonian behaviour at the highest stresses. For structured liquids this transition from very high (creep) viscosity (>106 Pa.s) to mobile liquid (

950 citations

Journal ArticleDOI
Ronald G. Larson1
TL;DR: In this article, the authors present a review of the latest developments as well as earlier work in this area, organized into the following categories: Taylor-Couette flows, instabilities in cone and plate-and-plate flows, parallel shear flows, extrudate distortions and fracture, Instabilities in shear flow with interfaces, extensional flows, and thermohydrodynamic instabilities.
Abstract: Viscoelastic instabilities are of practical importance, and are the subject of growing interest. Reviewed here are the fresh developments as well as earlier work in this area, organized into the following categories: instabilities in Taylor-Couette flows, instabilities in cone-and-plate and plate-and-plate flows, instabilities in parallel shear flows, extrudate distortions and fracture, instabilities in shear flows with interfaces, instabilities in extensional flows, instabilities in multidimensional flows, and thermohydrodynamic instabilities. Emphasized in the review are comparisons between theory and experiment and suggested directions for future work.

883 citations