scispace - formally typeset
Search or ask a question
Author

Kent C. Johnson

Bio: Kent C. Johnson is an academic researcher from University of California, Riverside. The author has contributed to research in topics: Diesel fuel & NOx. The author has an hindex of 27, co-authored 81 publications receiving 1859 citations. Previous affiliations of Kent C. Johnson include Community emergency response team & Bourns College of Engineering.


Papers
More filters
Journal ArticleDOI
TL;DR: The first data on total capture gaseous on-road emission measurements following the California Air Resources Board 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment is provided.
Abstract: Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total c...

134 citations

Journal ArticleDOI
TL;DR: In this article, the authors conducted a large-scale study of biodiesel in both on-road and off-road uses for the military and encompassed a wide range of application types including two medium-duty trucks, two Humvees, a heavy heavy-duty diesel truck, a bus, two stationary backup generators (BUGs), a forklift and an airport tow vehicle.

85 citations

Journal ArticleDOI
TL;DR: The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed, and it is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real- world operating conditions.

83 citations

Journal ArticleDOI
01 Jul 2016-Fuel
TL;DR: In this article, the gaseous and particulate matter (PM) emissions from three heavy-duty natural gas vehicles, including a lean-burn bus with an oxidation catalyst and two stoichiometric Class 8 trucks with three-way catalysts were evaluated.

79 citations

Journal ArticleDOI
TL;DR: In this study, four commercial PEMS were compared with a Federal Reference Method for measuring emissions from a back-up generator over steady-state loads and a diesel truck on transient and steady- state chassis dynamometer tests.
Abstract: There is considerable interest in portable emissions measurement systems (PEMS) for emission inventory and regulatory applications. For this study, four commercial PEMS were compared with a Federal Reference Method (FRM) for measuring emissions from a back-up generator (BUG) over steady-state loads and a diesel truck on transient and steady-state chassis dynamometer tests. The agreement between the PEMS and the FRM varied depending on the pollutant and the particular PEMS tested for both the BUG and chassis dynamometer testing. The best performing PEMS for both the BUG and chassis testing was within ∼12% for NOx of the FRM. For the BUG testing, several PEMS showed agreement with the FRM within ∼5% for CO2. For the chassis dynamometer testing, the best PEMS showed agreement typically within ∼5% for CO2. PM measurements for the BUG testing were low compared to the FRM, with the best measurements ∼20% lower. For the chassis testing, two PM PEMS showed a good correlation but a high bias, while the correlation...

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal ArticleDOI
TL;DR: In this paper, the chemical properties of particulate matter (PM) in diesel vehicle exhaust at a time when emission regulations, diesel technology development, and particle characterization techniques are all undergoing rapid change are examined.

820 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive assessment of global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2.5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC).
Abstract: . This paper presents a comprehensive assessment of historical (1990–2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

448 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the techniques used to measure road vehicle emissions are examined in relation to the development of emission factors found in emission models used to produce emission inventories.

433 citations