scispace - formally typeset
Search or ask a question
Author

Kent Terwilliger

Bio: Kent Terwilliger is an academic researcher from National Renewable Energy Laboratory. The author has contributed to research in topics: Potential induced degradation & Silicon. The author has an hindex of 16, co-authored 40 publications receiving 1171 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that EVA will decompose to produce acetic acid that will lower the pH and generally increase surface corrosion rates and this enhanced corrosion is demonstrated in this work using aluminum mirrors deposited on glass.

251 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of encapsulant and soft backsheet materials that are important for photovoltaic (PV) module packaging are compared. And the relative effectiveness of various combined packaging strategies to protect PV devices has been studied using 80-nm-thick aluminum films deposited onto 10 cm×10 cm glass substrates.

189 citations

Proceedings ArticleDOI
19 Jun 2011
TL;DR: In this article, Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress.
Abstract: Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

181 citations

Proceedings ArticleDOI
28 Oct 2010
TL;DR: In this article, the authors performed accelerated lifetime testing of multicrystalline silicon PV modules in 85°C/85% relative humidity (RH) and 45°c/30% RH while placing the active layer in either positive or negative 600 V bias with respect to the grounded module frame.
Abstract: Because it is considered economically favorable to build arrays with high system voltage by serially connecting photovoltaic (PV) modules, it is necessary to explore the potential long-term degradation mechanisms that the modules may incur under such electrical potential. We performed accelerated lifetime testing of multicrystalline silicon PV modules in 85°C/85% relative humidity (RH) and 45°C/30% RH while placing the active layer in either positive or negative 600 V bias with respect to the grounded module frame. A negative bias applied to the active layer leads to more rapid and catastrophic module power degradation compared to a positive bias. This negative bias degradation is associated with significant shunting of individual cells as indicated by electroluminescence, thermal imaging, and I-V curves. Mass spectroscopy results support ion migration as one of the causes. Electrolytic corrosion is seen occurring with the silicon nitride antireflective coating and silver gridlines, and there is ionic transport of metallization at the encapsulant interface observed with damp heat and applied bias. Leakage current and module degradation are found to be highly dependent on the module construction, with factors such as encapsulant and front glass resistivity affecting performance. Measured leakage currents range from about the same as those seen in published reports of modules deployed in Florida (USA) to about 100 times higher when undergoing environmental chamber testing.

125 citations

Journal ArticleDOI
14 Jun 2015
TL;DR: An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID) as discussed by the authors.
Abstract: An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived from module power degradation data obtained semicontinuously and statistically by in-situ dark current–voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that the quantity of electric charge transferred from the active cell circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The developments in stability/degradation of OPVs in the last five years are reviewed, such as inverted device structures of the bulk heterojunction geometry device, which allows for more stable metal electrodes, the choice of more photostable active materials, the introduction of interfacial layers, and roll-to-roll fabrication.
Abstract: Organic photovoltaics (OPVs) evolve in an exponential manner in the two key areas of efficiency and stability. The power conversion efficiency (PCE) has in the last decade been increased by almost a factor of ten approaching 10%. A main concern has been the stability that was previously measured in minutes, but can now, in favorable circumstances, exceed many thousands of hours. This astonishing achievement is the subject of this article, which reviews the developments in stability/degradation of OPVs in the last five years. This progress has been gained by several developments, such as inverted device structures of the bulk heterojunction geometry device, which allows for more stable metal electrodes, the choice of more photostable active materials, the introduction of interfacial layers, and roll-to-roll fabrication, which promises fast and cheap production methods while creating its own challenges in terms of stability.

1,258 citations

Journal ArticleDOI
TL;DR: Recommendations are made on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.
Abstract: This review article examines the current state of understanding in how metal halide perovskite solar cells can degrade when exposed to moisture, oxygen, heat, light, mechanical stress, and reverse bias. It also highlights strategies for improving stability, such as tuning the composition of the perovskite, introducing hydrophobic coatings, replacing metal electrodes with carbon or transparent conducting oxides, and packaging. The article concludes with recommendations on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.

962 citations

Journal ArticleDOI
TL;DR: A review of different types of degradation found in literature in recent years is presented, according to literature, corrosion and discoloration of PV modules encapsulant are predominant degradation modes.

369 citations

01 Jan 2014
TL;DR: The international Task 13 expert team has summarized the literature as well as their knowledge and personal experiences on actual failures of PV modules, and introduces a signal transition method for the detection of defective circuits in installed PV modules.
Abstract: One key factor of reducing the costs of photovoltaic systems is to increase the reliability and the service life time of the PV modules. Today's statistics show degradation rates of the rated power for crystalline silicon PV modules of 0.8%/year Jordan11. To increase the reliability and the service life of PV modules one has to understand the challenges involved. For this reason, the international Task 13 expert team has summarized the literature as well as their knowledge and personal experiences on actual failures of PV modules. The target audience of this work is PV module designers, PV industry, engineering lines, test equipment developers, testing companies, technological research laboratories, standardisation committees, as well as national and regional planning authorities. In the first part, this document reports on the measurement methods which allow the identification and analysis of PV module failures. Currently, a great number of methods are available to characterise PV module failures outdoors and in labs. As well as using I-V characteristics as a diagnostic tool, we explain image based methods and visual inspection. For each method we explain the basis, indicate current best practice, and explain how to interpret the images. Three thermography methods are explained: thermography under steady state conditions, pulse thermography and lock-in thermography. The most commonly used of these methods is thermography under steady state conditions. Furthermore electroluminescence methods have become an increasingly popular standard lab approach for detecting failures in PV modules. 2A less common but easier to use method is UV fluorescence. This method can be used to detect module failures similar to those detected with thermography and electroluminescence techniques; however, the PV modules must be sited outdoors for at least one and a half years for the method to be effective. For visual documentation of module conditions in the field, we set up a standard which is now accepted and used by all authors documenting such tests. This standard format allows the documentation of visible module failures in standardised way and makes the data accessible for statistical evaluation. Furthermore we introduce a signal transition method for the detection of defective circuits in installed PV modules. All methods are linked to the PV module failures which are able to be found with these methods. In the second part, the most common failures of PV modules are described in detail. In particular these failures are: delamination, back sheet adhesion loss, junction box failure, frame breakage, EVA discolouration, cell cracks, snail tracks, burn marks, potential induced degradation, disconnected cell and string interconnect ribbons, defective bypass diodes; and special failures of thin-film modules, such as micro arcs at glued connectors, shunt hot spots, front glass breakage, and back contact degradation. Where possible, the origin of the failure is explained. A reference to the characterisation method is given to identify the failure. If available, statistics of the failure type in the field and from accelerating aging tests are shown. For each failure, a description of safety issues and the influence on the power loss is given, including typical follow-up failure modes. In the third part, new test methods are proposed for detection of PV module failures in the field. A special focus is made on mechanical tests because many problems have arisen in the last few years from the mechanical loading of modules. These mechanical loads occur during transportation and from snow loads on modules mounted on an incline. Furthermore, testing for UV degradation of PV modules, ammonia corrosion (sometimes found in roofs of stock breeding buildings) and potential induced degradation are described. The latter method caused some controversy within the international standardization committee until the finalization of this report because many alternative suggestions from different countries were proposed. The test methods are explained in detail, linked to failure descriptions and the results are compared to real failure occurrences, where possible. During a past Task 13 project phase, we recognised that the topic �3.2 Characterising and Classifying Failures of PV Modules� is an important on-going subject in the field of PV research. The current review of failure mechanisms shows that the origin and the power loss associated with some important PV module failures is not yet clear (e.g. snail tracks and cell cracks). There are also still some questions as to how best to test for some types of failure (e.g. potential induced degradation and cell cracks). Furthermore, despite the fact that a defective bypass diode or cell interconnect ribbon in a PV module may possibly lead to a fire, very little work has been done to detect these defects in an easy and reliable way once installed in a PV system. However, there are research groups currently working on those topics in order to overcome these challenges. Therefore, it is planed to continue our in-depth review of failures of photovoltaic modules in an extension of the TASK 13 project.

328 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of potential-induced degradation (PID) research.
Abstract: Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This paper also aims to provide an overview of future research paths to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.

288 citations