scispace - formally typeset
Search or ask a question
Author

Kenta Noda

Bio: Kenta Noda is an academic researcher from Sysmex Corporation. The author has contributed to research in topics: Immunoassay & CXCL9. The author has an hindex of 3, co-authored 8 publications receiving 39 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the effect of BNT162b2-elicited SARS-CoV-2 neutralizing activity (50% neutralization titer: NT50; assessed using infectious virions) with various determinants and the potency of sera against variants of concerns.
Abstract: While mRNA vaccines against SARS-CoV-2 are exceedingly effective in preventing symptomatic infection, their immune response features remain to be clarified. In the present prospective study, 225 healthy individuals in Japan, who received two BNT162b2 doses, were enrolled. Correlates of BNT162b2-elicited SARS-CoV-2-neutralizing activity (50% neutralization titer: NT50; assessed using infectious virions) with various determinants were examined and the potency of sera against variants of concerns was determined. Significant rise in NT50s was seen in sera on day 28 post-1st dose. A moderate inverse correlation was seen between NT50s and ages, but no correlation seen between NT50s and adverse effects. NT50s and SARS-CoV-2-S1-binding-IgG levels on day 28 post-1st dose and pain scores following the 2nd dose were greater in women than in men. The average half-life of NT50s was ~ 68 days, and 23.6% (49 out of 208 individuals) failed to show detectable neutralizing activity on day 150. While sera from elite-responders (NT50s > 1,500: the top 4% among the participants) potently to moderately blocked all variants of concerns examined, some sera with low NT50s failed to block the B.1.351-beta strain. Since BNT162b2-elicited immunity against SARS-CoV-2 is short, an additional vaccine or other protective measures are needed.

47 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a diagnostic test that detects SARS-CoV-2 IgG and IgM with high quantitativeness and reproducibility and low interference.
Abstract: The quantitative range and reproducibility of current serological tests for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are not optimized. Herein, we developed a diagnostic test that detects SARS-CoV-2 IgG and IgM with high quantitativeness and reproducibility and low interference. The system was based on the high-sensitivity chemiluminescence enzyme immunoassay (HISCL) platform and detects IgG and IgM specific to SARS-CoV-2 spike and nucleocapsid proteins. Quantification accuracy and reproducibility were evaluated using serially diluted samples from 60 SARS-CoV-2-infected patients. Assay performance was evaluated using serum samples from the SARS-CoV-2-infected patients and 500 SARS-CoV-2-negative serum samples collected before the emergence of SARS-CoV-2. The system showed high quantification accuracy (range, 102), high reproducibility (within 5%), and no cross-reaction between SARS1- and MERS-S proteins. Detection accuracy was 98.3% and 93.3% for IgG and IgM against spike proteins and 100% and 71.7% for IgG and IgM against nucleocapsid proteins, respectively. Mean antibody levels were > 10 times that in negative samples upon admission and > 100 times that at convalescent periods. Clinical severity upon admission was not correlated with IgG or IgM levels. This highly quantitative, reproducible assay system with high clinical performance may help analyze temporal serological/immunological profiles of SARS-CoV-2 infection and SARS-CoV-2 vaccine effectiveness.

45 citations

Journal ArticleDOI
TL;DR: Application of this rapid and sensitive immunoassay system to plasma of patients with several types of tumours demonstrated that soluble PD-1, PD-L1, and CTLA-4 levels were increased compared to those of healthy controls and varied among tumour types.
Abstract: Current clinically approved biomarkers for the PD-1 blockade cancer immunotherapy are based entirely on the properties of tumour cells. With increasing awareness of clinical responses, more precise biomarkers for the efficacy are required based on immune properties. In particular, expression levels of immune checkpoint-associated molecules such as PD-1, PD-L1, and CTLA-4 would be critical to evaluate the immune state of individuals. Although quantification of their soluble form leased from the membrane will provide quick evaluation of patients' immune status, available methods such as enzyme-linked immunosorbent assays to measure these soluble factors have limitations in sensitivity and reproducibility for clinical use. To overcome these problems, we developed a rapid and sensitive immunoassay system based on chemiluminescent magnetic technology. The system is fully automated, providing high reproducibility. Application of this system to plasma of patients with several types of tumours demonstrated that soluble PD-1, PD-L1, and CTLA-4 levels were increased compared to those of healthy controls and varied among tumour types. The sensitivity and detection range were sufficient for evaluating plasma concentrations before and after the surgical ablation of cancers. Therefore, our newly developed system shows potential for accurate detection of soluble PD-1, PD-L1, and CTLA-4 levels in the clinical practice.

28 citations

Journal ArticleDOI
TL;DR: The results suggest that urinary CD80 is unreliable as a differential diagnostic marker between MCD in relapse and FSGS or inherited kidney diseases, and increased urinaryCD80 excretion was present in all patients with active kidney disease.
Abstract: CD80, which regulates T cell activation, may provide a differential diagnostic marker between minimal change disease (MCD) and other renal diseases, including focal segmental glomerular sclerosis (FSGS). However, recent reports show contrasting results. Therefore, we evaluated the utility of urinary CD80 as a diagnostic biomarker. We collected 65 urine samples from 55 patients with MCD (n = 31), FSGS (n = 4), inherited nephrotic syndrome (n = 4), Alport syndrome (n = 5) and other glomerular diseases (n = 11), and control samples (n = 30). We measured urinary CD80 levels by ELISA. Urinary CD80 (ng/gCr) (median, interquartile range) levels were significantly higher in patients with MCD in relapse (91.5, 31.1–356.0), FSGS (376.2, 62.7–1916.0), and inherited nephrotic syndrome (220.1, 62.9–865.3), than in patients with MCD in remission (29.5, 21.7–52.8) (p < 0.05). Elevation of urinary CD80 was observed, even in patients with inherited nephrotic syndrome unrelated to T cell activation. Additionally, urinary CD80 was positively correlated with urinary protein levels. Our results suggest that urinary CD80 is unreliable as a differential diagnostic marker between MCD in relapse and FSGS or inherited kidney diseases. Increased urinary CD80 excretion was present in all patients with active kidney disease.

13 citations

Journal ArticleDOI
07 Jun 2021-Cytokine
TL;DR: In this paper, the authors investigated the association between inflammatory biomarker-based endotypes and severe COVID-19 phenotypes, and found that patients with high levels of Type 1 (T1) inflammatory markers frequently suffered from tissue damage, manifested as ARDS and AKI.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the authors investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Abstract: Abstract Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2–3 months after two ChAdOx1 doses, for 5–8 months after two BNT162b2 doses in those without prior infection and for 1–2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable.

113 citations

Journal ArticleDOI
06 Nov 2020-Cancers
TL;DR: Further insight is provided into the expression and function of the immune checkpoint PD-1 in natural killer cells, together with the limitations and perspectives of immunotherapies aimed at blocking the interaction of this inhibitory receptor with its ligands.
Abstract: In the last years, immunotherapy with antibodies against programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) has shown remarkable efficacy in the treatment of different types of tumours, representing a true revolution in oncology. While its efficacy has initially been attributed only to unleashing T cell responses, responsivity to PD-1/PD-L1 blockade was observed in some tumours with low Human Leukocyte Antigen (HLA) I expression and increasing evidence has revealed PD-1 surface expression and inhibitory function also in natural killer (NK) cells. Thus, the contribution of anti-PD-1/PD-L1 therapy to the recovery of NK cell anti-tumour response has recently been appreciated. Here, we summarize the studies investigating PD-1 expression and function in NK cells, together with the limitations and perspectives of immunotherapies. A better understanding of checkpoint biology is needed to design next-generation therapeutic strategies and to improve the clinical protocols of current therapies.

66 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the effect of BNT162b2-elicited SARS-CoV-2 neutralizing activity (50% neutralization titer: NT50; assessed using infectious virions) with various determinants and the potency of sera against variants of concerns.
Abstract: While mRNA vaccines against SARS-CoV-2 are exceedingly effective in preventing symptomatic infection, their immune response features remain to be clarified. In the present prospective study, 225 healthy individuals in Japan, who received two BNT162b2 doses, were enrolled. Correlates of BNT162b2-elicited SARS-CoV-2-neutralizing activity (50% neutralization titer: NT50; assessed using infectious virions) with various determinants were examined and the potency of sera against variants of concerns was determined. Significant rise in NT50s was seen in sera on day 28 post-1st dose. A moderate inverse correlation was seen between NT50s and ages, but no correlation seen between NT50s and adverse effects. NT50s and SARS-CoV-2-S1-binding-IgG levels on day 28 post-1st dose and pain scores following the 2nd dose were greater in women than in men. The average half-life of NT50s was ~ 68 days, and 23.6% (49 out of 208 individuals) failed to show detectable neutralizing activity on day 150. While sera from elite-responders (NT50s > 1,500: the top 4% among the participants) potently to moderately blocked all variants of concerns examined, some sera with low NT50s failed to block the B.1.351-beta strain. Since BNT162b2-elicited immunity against SARS-CoV-2 is short, an additional vaccine or other protective measures are needed.

47 citations

Journal ArticleDOI
TL;DR: It is shown that PD-L1 is highly expressed in premalignant lesions progressing to cancer, suggesting that immunomodulation via PD- L1/PD-1 pathway occurs prior to malignant transformation.
Abstract: Oral cancer is a devastating disease and is commonly preceded by a range of oral premalignant disorders. We investigated the expression of PD-1 and PD-L1 in oral epithelial dysplasia (OED) that progressed to oral squamous cell carcinoma (OSCC) compared to non-progressing dysplasia. 49 oral biopsies were analyzed, including 19 progressing cases, 20 cases did not progress, and 10 OSCC. Samples were stained with monoclonal antibodies for PD-1 and PD-L1, followed by conventional peroxidase reaction immunohistochemistry (IHC) imaged under light microscopy or fluorescent immunohistochemistry (FIHC) imaged using a confocal microscope. Images were analyzed using a novel semi-automated analysis protocol. PD-1/PD-L1 expression was assessed at the epithelium/tumor cells (TC) and at inflammatory cells in lamina propria. Our results show a significant increase in PD-L1 expression in progressing compared to non-progressing dysplasia. Using FIHC, we showed increased PD-L1 expression, increased nuclear density in progressing dysplasia and a better interobserver agreement compared with IHC. We developed a new FIHC-based quantitative method to study PD-1/PD-L1 expression in FFPE samples and showed that PD-L1 is highly expressed in premalignant lesions progressing to cancer. Our results suggest that immunomodulation via PD-L1/PD-1 pathway occurs prior to malignant transformation.

46 citations

Journal ArticleDOI
17 Jun 2021-Cancers
TL;DR: In this article, the authors reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein, and the structural heterogeneity of s PD-L 1 proteins should be kept in mind when considering sPDL1 as a biomarker or as a drug target.
Abstract: Upon T-cell receptor stimulation, the Programmed cell Death-1 receptor (PD-1) expressed on T-cells can interact with its ligand PD-L1 expressed at the surface of cancer cells or antigen-presenting cells. Monoclonal antibodies targeting PD-1 or PD-L1 are routinely used for the treatment of cancers, but their clinical efficacy varies largely across the variety of tumor types. A part of the variability is linked to the existence of several forms of PD-L1, either expressed on the plasma membrane (mPD-L1), at the surface of secreted cellular exosomes (exoPD-L1), in cell nuclei (nPD-L1), or as a circulating, soluble protein (sPD-L1). Here, we have reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein. sPD-L1 isoforms can be generated essentially by two non-exclusive processes: (i) proteolysis of m/exoPD-L1 by metalloproteases, such as metalloproteinases (MMP) and A disintegrin and metalloproteases (ADAM), which are capable of shedding membrane PD-L1 to release an active soluble form, and (ii) the alternative splicing of PD-L1 pre-mRNA, leading in some cases to the release of sPD-L1 protein isoforms lacking the transmembrane domain. The expression and secretion of sPD-L1 have been observed in a large variety of pathologies, well beyond cancer, notably in different pulmonary diseases, chronic inflammatory and autoimmune disorders, and viral diseases. The expression and role of sPD-L1 during pregnancy are also evoked. The structural heterogeneity of sPD-L1 proteins, and associated functional/cellular plurality, should be kept in mind when considering sPD-L1 as a biomarker or as a drug target. The membrane, exosomal and soluble forms of PD-L1 are all integral parts of the highly dynamic PD-1/PD-L1 signaling pathway, essential for immune-tolerance or immune-escape.

42 citations