scispace - formally typeset
Search or ask a question
Author

Kentaro Shiraki

Bio: Kentaro Shiraki is an academic researcher from University of Tsukuba. The author has contributed to research in topics: Protein aggregation & Arginine. The author has an hindex of 35, co-authored 197 publications receiving 4552 citations. Previous affiliations of Kentaro Shiraki include Osaka University & Japan Advanced Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that β-lactoglobulin, which consists predominantly of β-sheets, exhibited a markedly high propensity to form an α–-helical structure in the presence of TFE, as measured by far-UV circular dichroism.

429 citations

Journal ArticleDOI
TL;DR: Among 15 amino acids tested, arginine exhibited the best results in preventing the formation of aggregates in both cases and was not dependent on the size or isoelectric point of eight kinds of proteins tested.
Abstract: Each protein folds into a unique and native structure spontaneously. However, during the unfolding or refolding process, a protein often tends to form aggregates. To establish a method to prevent undesirable protein aggregation and to increase the stability of native protein structures under deterioration conditions, two types of aggregation conditions, thermal unfolding-induced aggregation and dilution-induced aggregation from denatured state, were studied in the presence of additional amino acids and ions using lysozyme as a model protein. Among 15 amino acids tested, arginine exhibited the best results in preventing the formation of aggregates in both cases. Further biophysical studies revealed that arginine did not change the thermal denaturation temperature (T(m)) of the lysozyme. The preventive effect of arginine on aggregation was not dependent on the size or isoelectric point of eight kinds of proteins tested.

258 citations

Journal ArticleDOI
TL;DR: This paper overviews solution additives that affect protein stability and aggregation during refolding, heating, and freezing processes and designs protein solutions for increased stability or reduced aggregation.
Abstract: This paper overviews solution additives that affect protein stability and aggregation during refolding, heating, and freezing processes. Solution additives are mainly grouped into two classes, i.e., protein denaturants and stabilizers. The former includes guanidine, urea, strong ionic detergents, and certain chaotropic salts; the latter includes certain amino acids, sugars, polyhydric alcohols, osmolytes, and kosmotropic salts. However, there are solution additives that are not unambiguously placed into these two classes, including arginine, certain divalent cation salts (e.g., MgCl ) and certain polyhydric alcohols (e.g., ethylene glycol). Certain non-ionic or non-detergent surfactants, ionic liquids, amino acid derivatives, polyamines, and certain amphiphilic polymers may belong to this class. They have marginal effects on protein structure and stability, but are able to disrupt protein interactions. Information on additives that do not catalyze chemical reactions nor affect protein functions helps us to design protein solutions for increased stability or reduced aggregation.

236 citations

Journal ArticleDOI
TL;DR: High-resolution mass spectrometry revealed that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment, providing fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.
Abstract: Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

194 citations

Journal ArticleDOI
TL;DR: The chemical effects of low-temperature atmospheric pressure plasma on protein in aqueous solution using lysozyme as a model showed decreased enzymatic activity and changed the secondary structure that results from the increased molecular weight of lyso enzyme with chemical modification.
Abstract: Plasma medicine is an attractive new research area, but fundamental information related to plasma modification of biomacromolecules in aqueous solution remains elusive. As described herein, we investigated the chemical effects of low-temperature atmospheric pressure plasma on protein in aqueous solution using lysozyme as a model. Plasma treatment decreased enzymatic activity and changed the secondary structure that results from the increased molecular weight of lysozyme with chemical modification. These effects arise neither from UV light nor from plasma heat, suggesting that the reactive species generated by the plasma affect lysozyme. The information presented in this paper represents a crucial first step for elucidating chemical reactions induced by plasma on proteins for biomedical applications.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: This review discusses the molecular mechanisms of toxic metal accumulation in plants and algae, the responses to metal exposure, as well as the understanding of metal tolerance and its evolution.

1,598 citations

Journal ArticleDOI
TL;DR: These studies suggest the possibility of creating “foldable” chain molecules other than proteins, and can account for the properties that characterize protein folding: two‐state cooperativity, secondary and tertiary structures, and multistage folding kinetics.
Abstract: General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics-fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse.

1,433 citations

Journal ArticleDOI
TL;DR: This review focuses on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators.
Abstract: In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping ...

1,395 citations