scispace - formally typeset
Search or ask a question
Author

Kenton H. Whitmire

Bio: Kenton H. Whitmire is an academic researcher from Rice University. The author has contributed to research in topics: Crystal structure & Bismuth. The author has an hindex of 42, co-authored 256 publications receiving 6134 citations. Previous affiliations of Kenton H. Whitmire include Northwestern University & University of Göttingen.


Papers
More filters
Journal ArticleDOI
14 May 2009-ACS Nano
TL;DR: A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed oxide magnetic core directly from the plAsmonic behavior of the core-shell nanoparticle.
Abstract: Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wustite with magnetite-rich corners and edges retain magnetic properties when coated with a Au shell layer, with the composite nanostructures showing ferrimagnetic behavior. The plasmonic properties are profoundly influenced by the high dielectric constant of the mixed iron oxide nanocrystalline core. A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed oxide magnetic core directly from the plasmonic behavior of the core−shell nanoparticle.

341 citations

Journal ArticleDOI
TL;DR: In this paper, the efficiency of three furan derivatives (2-methylfuran, furfuryl alcohol and furfurolamine) as corrosion inhibitors for carbon steel in 1-M HCl, was determined by gravimetric and electrochemical measurements.

220 citations

Journal ArticleDOI
TL;DR: In this article, the first coordination geometry of Pb(II) atoms in crystal structures of 98 lead-II complexes with O-donor ligands and the stereochemically active lone pair of electrons (LP, E) in the terms of the VSEPR model was discussed.

206 citations

01 Oct 2008
TL;DR: In this paper, the first coordination geometry of Pb(II) atoms in crystal structures of 98 lead-II complexes with O-donor ligands and the stereochemically active lone pair of electrons (LP, E) in the terms of the valence shell electron-pair repulsion (VSEPR) model was discussed.
Abstract: This review discusses the coordination number (CN) and the coordination geometry of the first coordination sphere of Pb(II) atoms in crystal structures of 98 lead(II) complexes with O-donor ligands and the stereochemically active lone pair of electrons (LP, E) in the terms of the valence shell electron-pair repulsion (VSEPR) model. The CN of Pb(II) atoms of the first coordination sphere has values falling into the range (3 + E) to (6 + E). The following coordination polyhedra-{psi}-tetrahedron (I), {psi}-trigonal bipyramid (II), {psi}-octahedron (III), {psi}-pentagonal bipyramid with an axial (IV) or equatorial (V) vacant position are formed. For the investigated structures of the Pb(II) complexes, the formula of each compound, the overall CN of the Pb(II) atom considered as the sum of the CN in the first coordination sphere and the number of secondary bonds, the polyhedron shape, the Pb-O bond lengths, and O-Pb-O bond angles in the first coordination sphere, secondary bond lengths, references and REFCODEs are presented in the comprehensive Tables. The quantum chemical investigations performed using density functional theory (DFT) method have confirmed the stereochemical activity of the LP of Pb(II) atoms in the studied structures of lead(II) complexes with O-donor ligands.

181 citations

Journal ArticleDOI
TL;DR: In this article, a review of the chemistry and structures of bismuth(III) complexes with aminopolycarboxylate (APC) and polyaminopoly carboxylates (PAPC), and several aspects of recent applications of Bi-III APC and PAPC complexes are discussed.

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 1. Advantages and disadvantages of Chemical Redox Agents, 2. Reversible vs Irreversible ET Reagents, 3. Categorization of Reagent Strength.
Abstract: 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 1. Radical Cations 891 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich Compounds 894

3,432 citations

Journal ArticleDOI
TL;DR: The geometries of 131 SBUs, their connectivity and composition of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) towards construction and synthesis of metal-organic frameworks (MOFs).
Abstract: This critical review presents a comprehensive study of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) towards construction and synthesis of metal–organic frameworks (MOFs). We describe the geometries of 131 SBUs, their connectivity and composition. This contribution presents a comprehensive list of the wide variety of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) in the construction and synthesis of metal–organic frameworks. The SBUs discussed here were obtained from a search of molecules and extended structures archived in the Cambridge Structure Database (CSD, version 5.28, January 2007) which included only crystals containing metal carboxylate linkages (241 references).

2,145 citations

Journal ArticleDOI
TL;DR: A detailed molecular mechanism has been proposed for IPNS based on spectroscopic and crystallographic studies and the role of cosubstrate ascorbate is proposed to reduce the toxic peroxo byproduct to water.
Abstract: ion step follows the decarboxylation, which is consistent with the deuterium isotopic effects observed for thymine 7-hydroxylase which indicate that an irreversible step (or steps) occurs prior to the C-H bond breaking.395 It has also been shown for prolyl 4-hydroxylase that a substrate-derived radical is generated in the reaction, which is consistent with a rebound mechanism.437 It is important to point out that no oxygen intermediate (i.e., bridged superoxo or oxo-ferryl) has been observed for any R-KGdependent enzyme. This warrants future theoretical and experimental study. A detailed molecular mechanism has been proposed for IPNS based on spectroscopic and crystallographic studies.422 Resting IPNS/FeII is also 6C and thus relatively stable toward dioxygen. Substrate ACV binds directly to FeII IPNS through its thiolate group, providing an open coordination position at the FeII. O2 can then react to form an FeIII-superoxo intermediate. This intermediate is suggested422 to perform the first hydrogen-atom abstraction step and close the â-lactam ring, resulting in the formation of the first water molecule and generating an FeIVdO-II intermediate, which completes the second ringclosure process by hydrogen-atom abstraction forming a thiazolidine ring. Previously proposed mechanisms of ACCO involved direct binding of cosubstrate ascorbate to the iron before O2 as part of the oxygen activation process.438,439 The EPR and ESEEM studies of the NO complex of ACCO suggested a quite different molecular mechanism for ACCO.435 An FeIII-superoxo intermediate is proposed. Whether it is preceded by a 6C f 5C process with substrate binding is presently under study.440 This intermediate is thought to initiate a radical process by single hydrogen-atom abstraction or electron-coupled proton transfer (PT)ion or electron-coupled proton transfer (PT) from the bound amino group. The resulting substrate radical may undergo spontaneous conversion into products. The role of cosubstrate ascorbate is proposed to reduce the toxic peroxo byproduct to water. Alternatively, the two-electron reduction of FeIIIsuperoxo by the cosubstrate ascorbate could result in an FeIVdO-II intermediate which initiates the radical reaction.435 4. Rieske-Type Dioxygenases Biochemical Characterization. The Rieske ironsulfur center is a two iron-two sulfur cluster ([2Fe2S]) which has a 2His (on one iron), 2Cys (on the other iron) coordination environment, instead of the 4Cys present in plant ferredoxins. It plays a key role in the electron transport pathway in membranebound cytochrome complexes as well as in some dioxygenases.441 The latter are mainly comprised of two protein components: a reductase containing flavin and a ferredoxin [2Fe-2S], and a terminal oxygenase containing a Rieske [2Fe-2S] cluster and a non-heme iron active site.442 Except for the recently reported alkene monooxygenase that has a binuclear iron site in its terminal oxygenase,10 most of the Rieske-type oxygenases have a mononuclear iron site, which is believed to be the site of dioxygen activation and substrate oxygenation.442,443 The majority of the Rieske-type mononuclear non-heme oxygenases form a family of enzymes which are aromatic-ring-hydroxylating dioxygenases. These catalyze the regioand stereospecific cis-dihydroxylation of an aromatic ring using dioxygen and NAD(P)H (Table 1). Examples include benzene dioxygenase (BDO, EC 1.14.12.3),444 phthalate dioxygenase (PDO, EC 1.14.12.7),445 toluene dioxygenase (EC 1.14.12.11),446 and naphthalene 1,2-dioxygenase (NDO, EC 1.14.12.12),447 which initiate the aerobic degradation of aromatic compounds in the soil bacteria and are targets for bioengineering in bioremediation. This step is the first step in the pathway that ultimately leads to ring cleavage by the intraand extradiol dioxygenases (sections II.B.2 and II.C.1).443 Besides these bacterial dioxygenases, other Rieske-type mononuclear non-heme oxygenases include anthranilate 1,2-dioxygenase (EC 1.14.12.1),448 which deaminates and decarboxylates the substrate to produce catechol; chlorophenylacetate 3,4-dioxygenase (EC 1.14.2.13),449 which converts substrate to catechol with chloride elimination; and 4-methoxybenzoate O-demethylase (putidamonooxin),450 which catalyzes the conversion of 4-methoxybenzoic acid to 4-hydroxybenzoic acid and formaldehyde. The reductase component is usually a monomer (MW ) 12-15 kDa) and utilizes flavin to mediate ET from the two-electron donor NAD(P)H to the oneelectron acceptor [2Fe-2S] cluster and is specific to each terminal oxygenase; other electron donors do not support efficient oxygenation.442 The crystal structure of phthalate dioxygenase reductase is available.451 The terminal oxygenases are large protein aggregates (MW ) 150-200 kDa) containing either multiples of R subunits (BDO R2, PDO R4) or an equimolar combination of R and â subunits (toluene dioxygenase R2â2, NDO R3â3). The R subunits contain a Rieske [2Fe-2S] cluster and a catalytic non-heme FeII center. â subunits do not seem to be involved in the catalytic function (vide infra). Kinetics. Steady-state kinetic studies coupled with various rapid reaction studies of the partial reactions of PDO allowed Ballou et al. to propose a kinetic scheme (Scheme 15).443 On the basis of steady state 278 Chemical Reviews, 2000, Vol. 100, No. 1 Solomon et al.

1,503 citations