scispace - formally typeset
Search or ask a question
Author

Kerstin Worhoff

Bio: Kerstin Worhoff is an academic researcher from MESA+ Institute for Nanotechnology. The author has contributed to research in topics: Waveguide (optics) & Laser. The author has an hindex of 28, co-authored 186 publications receiving 2893 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the most recent developments and improvements to the low-loss TriPleX Si3N4 waveguide technology is presented in this article, which can be combined to design complex functional circuits, but more important are manufactured in a single monolithic flow to create a compact photonic integrated circuit.
Abstract: An overview of the most recent developments and improvements to the low-loss TriPleX Si3N4 waveguide technology is presented in this paper The TriPleX platform provides a suite of waveguide geometries (box, double stripe, symmetric single stripe, and asymmetric double stripe) that can be combined to design complex functional circuits, but more important are manufactured in a single monolithic process flow to create a compact photonic integrated circuit All functionalities of the integrated circuit are constructed using standard basic building blocks, namely straight and bent waveguides, splitters/combiners and couplers, spot size converters, and phase tuning elements The basic functionalities that have been realized are: ring resonators and Mach–Zehnder interferometer filters, tunable delay elements, and waveguide switches Combination of these basic functionalities evolves into more complex functions such as higher order filters, beamforming networks, and fully programmable architectures Introduction of the active InP chip platform in a combination with the TriPleX will introduce light generation, modulation, and detection to the low-loss platform This hybrid integration strategy enables fabrication of tunable lasers, fully integrated filters, and optical beamforming networks

278 citations

Journal ArticleDOI
TL;DR: In this paper, a scalable method employing a random unitary chip and a quantum walk chip is developed to experimentally verify correct operation for large-scale boson sampling, and the resulting statistics of the output of a linear interferometer fed by indistinguishable single-photon states exhibits true nonclassical characteristics.
Abstract: Scalable methods employing a random unitary chip and a quantum walk chip are developed to experimentally verify correct operation for large-scale boson sampling. Experimental analysis reveals that the resulting statistics of the output of a linear interferometer fed by indistinguishable single-photon states exhibits true non-classical characteristics.

238 citations

Journal ArticleDOI
TL;DR: TriPleX as discussed by the authors is a dielectric waveguide platform based on alternating silicon nitride and silicon dioxide films, which can achieve low-loss waveguides over a wide wavelength range (400 nm-2.35 μm).
Abstract: Abstract Photonic applications based on planar waveguide technology impose stringent requirements on properties such as optical propagation losses, light coupling to optical fibers, integration density, as well as on reliability and reproducibility. The latter is correlated to a high level of control of the refractive index and waveguide geometry. In this paper, we review a versatile dielectric waveguide platform, called TriPleX, which is based on alternating silicon nitride and silicon dioxide films. Fabrication with CMOS-compatible equipment based on low-pressure chemical vapor deposition enables the realization of stable material compositions being a prerequisite to the control of waveguide properties and modal shape. The transparency window of both materials allows for the realization of low-loss waveguides over a wide wavelength range (400 nm–2.35 μm). Propagation losses as low as 5×10-4 dB/cm are reported. Three basic geometries (box shell, double stripe, and filled box) can be distinguished. A specific tapering technology is developed for on-chip, low-loss (<0.1 dB) spotsize convertors, allowing for combining efficient fiber to chip coupling with high-contrast waveguides required for increased functional complexity as well as for hybrid integration with other photonic platforms such as InP and SOI. The functionality of the TriPleX platform is captured by verified basic building blocks. The corresponding library and associated design kit is available for multi-project wafer (MPW) runs. Several applications of this platform technology in communications, biomedicine, sensing, as well as a few special fields of photonics are treated in more detail.

190 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the design of a waveguiding structure, demonstrate the practical feasibility of realizing this structure, and discuss the preliminary measurement results, which is a very versatile material, which can be designed having the potential of meeting all those requirements.
Abstract: Planar optical waveguiding structures for application in communication networks are highly demanding with respect to low insertion loss, efficient fiber-to-chip coupling, polarization independent operation, high integration density, reliable fabrication, and last but not least cost efficiency. When applying silicon oxynitride, which is a very versatile material, planar waveguiding structures can be designed having the potential of meeting all those requirements. In this paper, we will describe the design of such a waveguiding structure, demonstrate the practical feasibility of realizing this structure and discuss the preliminary measurement results.

179 citations

Journal ArticleDOI
TL;DR: Erbium-doped aluminum oxide integrated optical amplifiers were fabricated on silicon substrates, and their characteristics were investigated for Er concentrations ranging from 0.27 to 4.2×1020 cm−3.
Abstract: Erbium-doped aluminum oxide integrated optical amplifiers were fabricated on silicon substrates, and their characteristics were investigated for Er concentrations ranging from 0.27 to 4.2×1020 cm−3. Background losses below 0.3 dB/cm at 1320 nm were measured. For optimum Er concentrations in the range of 1 to 2×1020 cm−3, an internal net gain was obtained over a wavelength range of 80 nm(1500-1580 nm), and a peak gain of 2.0 dB/cm was measured at 1533 nm. The broadband and high peak gain are attributed to an optimized fabrication process, improved waveguide design, and pumping at 977 nm as opposed to 1480 nm. In a 5.4-cm-long amplifier, a total internal net gain of up to 9.3 dB was measured. By use of a rate-equation model, an internal net gain of 33 dB at the 1533 nm gain peak and more than 20 dB for all wavelengths within the telecom C-band (1525-1565 nm) are predicted for a launched signal power of 1 μW when launching 100 mW of pump power into a 24-cm-long amplifier. The high optical gain demonstrates that Al2O3:Er3+ is a competitive technology for active integrated optics.

137 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

Journal ArticleDOI

2,877 citations

Journal ArticleDOI
Jing Zhou1, Qian Liu1, Wei Feng1, Yun Sun1, Fuyou Li1 

1,679 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations