scispace - formally typeset
Search or ask a question
Author

Kevin Bryson

Bio: Kevin Bryson is an academic researcher from University College London. The author has contributed to research in topics: Protein structure prediction & Protein function prediction. The author has an hindex of 24, co-authored 46 publications receiving 9171 citations. Previous affiliations of Kevin Bryson include University of Glasgow & Institut national de la recherche agronomique.


Papers
More filters
Journal ArticleDOI
TL;DR: The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web.
Abstract: The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method.

3,381 citations

Journal ArticleDOI
TL;DR: The PSIPRED Protein Analysis Workbench unites all of the previously available analysis methods into a single web-based framework and provides a greatly streamlined user interface with a number of new features to allow users to better explore their results.
Abstract: Here, we present the new UCL Bioinformatics Group’s PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/.

1,287 citations

Journal ArticleDOI
Predrag Radivojac1, Wyatt T. Clark1, Tal Ronnen Oron2, Alexandra M. Schnoes3, Tobias Wittkop2, Artem Sokolov4, Artem Sokolov5, Kiley Graim5, Christopher S. Funk6, Karin Verspoor6, Asa Ben-Hur5, Gaurav Pandey7, Gaurav Pandey8, Jeffrey M. Yunes7, Ameet Talwalkar7, Susanna Repo7, Susanna Repo9, Michael L Souza7, Damiano Piovesan10, Rita Casadio10, Zheng Wang11, Jianlin Cheng11, Hai Fang, Julian Gough12, Patrik Koskinen13, Petri Törönen13, Jussi Nokso-Koivisto13, Liisa Holm13, Domenico Cozzetto14, Daniel W. A. Buchan14, Kevin Bryson14, David T. Jones14, Bhakti Limaye15, Harshal Inamdar15, Avik Datta15, Sunitha K Manjari15, Rajendra Joshi15, Meghana Chitale16, Daisuke Kihara16, Andreas Martin Lisewski17, Serkan Erdin17, Eric Venner17, Olivier Lichtarge17, Robert Rentzsch14, Haixuan Yang18, Alfonso E. Romero18, Prajwal Bhat18, Alberto Paccanaro18, Tobias Hamp19, Rebecca Kaßner19, Stefan Seemayer19, Esmeralda Vicedo19, Christian Schaefer19, Dominik Achten19, Florian Auer19, Ariane Boehm19, Tatjana Braun19, Maximilian Hecht19, Mark Heron19, Peter Hönigschmid19, Thomas A. Hopf19, Stefanie Kaufmann19, Michael Kiening19, Denis Krompass19, Cedric Landerer19, Yannick Mahlich19, Manfred Roos19, Jari Björne20, Tapio Salakoski20, Andrew Wong21, Hagit Shatkay22, Hagit Shatkay21, Fanny Gatzmann23, Ingolf Sommer23, Mark N. Wass24, Michael J.E. Sternberg24, Nives Škunca, Fran Supek, Matko Bošnjak, Panče Panov, Sašo Džeroski, Tomislav Šmuc, Yiannis A. I. Kourmpetis25, Yiannis A. I. Kourmpetis26, Aalt D. J. van Dijk26, Cajo J. F. ter Braak26, Yuanpeng Zhou27, Qingtian Gong27, Xinran Dong27, Weidong Tian27, Marco Falda28, Paolo Fontana, Enrico Lavezzo28, Barbara Di Camillo28, Stefano Toppo28, Liang Lan29, Nemanja Djuric29, Yuhong Guo29, Slobodan Vucetic29, Amos Marc Bairoch30, Amos Marc Bairoch31, Michal Linial32, Patricia C. Babbitt3, Steven E. Brenner7, Christine A. Orengo14, Burkhard Rost19, Sean D. Mooney2, Iddo Friedberg33 
TL;DR: Today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets, and there is considerable need for improvement of currently available tools.
Abstract: Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.

859 citations

Journal ArticleDOI
TL;DR: A number of state-of-the-art protein structure prediction servers have been developed by researchers working in the Bioinformatics Unit at University College London, and these servers include DISOPRED for the prediction of protein dynamic disorder and DomPred for domain boundary prediction.
Abstract: A number of state-of-the-art protein structure prediction servers have been developed by researchers working in the Bioinformatics Unit at University College London. The popular PSIPRED server allows users to perform secondary structure prediction, transmembrane topology prediction and protein fold recognition. More recent servers include DISOPRED for the prediction of protein dynamic disorder and DomPred for domain boundary prediction. These servers are available from our software home page at http://bioinf.cs.ucl.ac.uk/software.html.

760 citations

Journal ArticleDOI
TL;DR: Dynamically disordered regions appear to be relatively abundant in eukaryotic proteomes and the DISOPRED server allows users to submit a protein sequence, and returns a probability estimate of each residue in the sequence being disordered.
Abstract: Summary: Dynamically disordered regions appear to be relatively abundant in eukaryotic proteomes. The DISOPRED server allows users to submit a protein sequence, and returns a probability estimate of each residue in the sequence being disordered. The results are sent in both plain text and graphical formats, and the server can also supply predictions of secondary structure to provide further structural information. Availability: The server can be accessed by non-commercial users at http://bioinf.cs.ucl.ac.uk/disopred/

695 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Abstract: We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the logexpectation score, and refinement using treedependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

37,524 citations

Journal ArticleDOI
TL;DR: A fully automated service for annotating bacterial and archaeal genomes that identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user.
Abstract: The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them. We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service. By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.

9,397 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: Node2vec as mentioned in this paper learns a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes by using a biased random walk procedure.
Abstract: Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.

7,072 citations

Journal ArticleDOI
TL;DR: This protocol provides a guide to interpreting the output of structure prediction servers in general and one such tool in particular, the protein homology/analogy recognition engine (Phyre), which can reliably detect up to twice as many remote homologies as standard sequence-profile searching.
Abstract: Determining the structure and function of a novel protein is a cornerstone of many aspects of modern biology. Over the past decades, a number of computational tools for structure prediction have been developed. It is critical that the biological community is aware of such tools and is able to interpret their results in an informed way. This protocol provides a guide to interpreting the output of structure prediction servers in general and one such tool in particular, the protein homology/analogy recognition engine (Phyre). New profile–profile matching algorithms have improved structure prediction considerably in recent years. Although the performance of Phyre is typical of many structure prediction systems using such algorithms, all these systems can reliably detect up to twice as many remote homologies as standard sequence-profile searching. Phyre is widely used by the biological community, with >150 submissions per day, and provides a simple interface to results. Phyre takes 30 min to predict the structure of a 250-residue protein.

4,403 citations

Journal ArticleDOI
TL;DR: The new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies less on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence.
Abstract: Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

3,902 citations