scispace - formally typeset
Search or ask a question
Author

Kevin D. Sinclair

Bio: Kevin D. Sinclair is an academic researcher from University of Nottingham. The author has contributed to research in topics: Embryo & Offspring. The author has an hindex of 48, co-authored 147 publications receiving 8309 citations. Previous affiliations of Kevin D. Sinclair include Loughborough University & Scottish Agricultural College.


Papers
More filters
Journal ArticleDOI
TL;DR: Four different situations have been identified that result in the large offspring syndrome: in vitro embryo culture, asynchronous embryo transfer into an advanced uterine environment, nuclear transfer and maternal exposure to excessively high urea diets.
Abstract: Bovine and ovine embryos exposed to a variety of unusual environments prior to the blastocyst stage have resulted in the development of unusually large offspring which can also exhibit a number of organ defects. In these animals, the increased incidence of difficult parturition and of fetal and neonatal losses has limited the large-scale use of in vitro embryo production technologies commonly used in humans and other species. Four different situations have been identified that result in the syndrome: in vitro embryo culture, asynchronous embryo transfer into an advanced uterine environment, nuclear transfer and maternal exposure to excessively high urea diets. However, programming of the syndrome by all of these situations is unpredictable and not all of the symptoms described have been observed universally. Neither the environmental factors inducing the large offspring syndrome nor the mechanisms of perturbation occurring in the early embryo and manifesting themselves in the fetus have been identified.

912 citations

Journal ArticleDOI
TL;DR: The demonstration of reduced fetal methylation and expression of ovine IGF2R suggests pre-implantation embryo procedures may be vulnerable to epigenetic alterations in imprinted genes, and highlights the potential benefits of epigenetic diagnostic screening in developing embryo procedures.
Abstract: Manipulation or non-physiological embryo culture environments can lead to defective fetal programming in livestock. Our demonstration of reduced fetal methylation and expression of ovine IGF2R suggests pre-implantation embryo procedures may be vulnerable to epigenetic alterations in imprinted genes. This highlights the potential benefits of epigenetic diagnostic screening in developing embryo procedures.

829 citations

Journal ArticleDOI
TL;DR: The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.
Abstract: A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B12 and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure–effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.

745 citations

Journal ArticleDOI
TL;DR: Evidence presented indicates that parental nutrition and other lifestyle factors during the periconceptional period can affect reproductive performance via 1-C metabolic pathways and provides opportunities for treatment and prevention of reproductive failures and future non-communicable diseases.
Abstract: BACKGROUND Most reproductive failures originate during the periconceptional period and are influenced by the age and the lifestyle of parents-to-be. We advance the hypothesis that these failures can arise as a partial consequence of derangements to one-carbon (1-C) metabolism (i.e. metabolic pathways that utilize substrates/cofactors such as methionine, vitamin B12, folate). 1-C metabolic pathways drive the synthesis of proteins, biogenic amines and lipids required for early growth, together with the synthesis and methylation of DNA and histones essential for the regulation of gene expression. We review how deficiencies in periconceptional 1-C metabolism affect fertility and development together with underlying mechanisms derived from animal studies. METHODS A literature search was performed using PubMed and bibliographies of all relevant original research articles and reviews. RESULTS We define 'periconception' as a 5-6-month period in women embracing oocyte growth, fertilization, conceptus formation and development to Week 10 of gestation (coinciding with the closure of the secondary palate in the embryo). During this period significant epigenetic modifications to chromatin occur that correspond with normal development. Subtle variations in 1-C metabolism genes and deficiencies in 1-C substrates/cofactors together with poor lifestyle, such as smoking and alcohol consumption, disturb 1-C metabolism and contribute to subfertility and early miscarriage and compromise offspring health. Procedures used in assisted reproduction can also disturb these metabolic pathways and contribute to poor pregnancy outcomes. CONCLUSIONS Evidence presented indicates that parental nutrition and other lifestyle factors during the periconceptional period can affect reproductive performance via 1-C metabolic pathways. This knowledge provides opportunities for treatment and prevention of reproductive failures and future non-communicable diseases.

286 citations

Journal ArticleDOI
TL;DR: It is proposed that the observed dietary-induced changes in the ovarian IGF system increase bioavailability of intrafollicular IGF, thus increasing the sensitivity of follicles to FSH, contributing to the observed increase in growth rate of the dominant follicle.
Abstract: Heifers were assigned either low or high (HE) levels of energy intake and low or high concentrations of dietary crude protein. The effect of these diets on the plasma concentrations of insulin, insulin-like growth factor (IGF)-I, and urea on follicular growth and early embryo development is described. We propose that the observed dietary-induced changes in the ovarian IGF system increase bioavailability of intrafollicular IGF, thus increasing the sensitivity of follicles to FSH. These changes, in combination with increased peripheral concentrations of insulin and IGF-I in heifers offered the HE diet, contribute to the observed increase in growth rate of the dominant follicle. In contrast to follicular growth, increased nutrient supply decreased oocyte quality, due in part to increased plasma urea concentrations. Clearly a number of mechanisms are involved in mediating the effects of dietary energy and protein on ovarian function, and the formulation of diets designed to optimize cattle fertility must consider the divergent effects of nutrient supply on follicular growth and oocyte quality.

229 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: Evidence from several disciplines is synthesized to support the contention that environmental factors acting during development should be accorded greater weight in models of disease causation.
Abstract: Many lines of evidence, including epidemiologic data and extensive clinical and experimental studies, indicate that early life events play a powerful role in influencing later susceptibility to certain chronic diseases. This review synthesizes evidence from several disciplines to support the contention that environmental factors acting during development should be accorded greater weight in models of disease causation.

3,290 citations

Journal ArticleDOI
TL;DR: It is shown that individuals who were prenatally exposed to famine during the Dutch Hunger Winter in 1944–45 had, 6 decades later, less DNA methylation of the imprinted IGF2 gene compared with their unexposed, same-sex siblings.
Abstract: Extensive epidemiologic studies have suggested that adult disease risk is associated with adverse environmental conditions early in development. Although the mechanisms behind these relationships are unclear, an involvement of epigenetic dysregulation has been hypothesized. Here we show that individuals who were prenatally exposed to famine during the Dutch Hunger Winter in 1944-45 had, 6 decades later, less DNA methylation of the imprinted IGF2 gene compared with their unexposed, same-sex siblings. The association was specific for periconceptional exposure, reinforcing that very early mammalian development is a crucial period for establishing and maintaining epigenetic marks. These data are the first to contribute empirical support for the hypothesis that early-life environmental conditions can cause epigenetic changes in humans that persist throughout life.

2,723 citations

Journal ArticleDOI
TL;DR: The study of imprinting provides new insights into epigenetic gene modification during development, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother.
Abstract: Genomic imprinting affects several dozen mammalian genes and results in the expression of those genes from only one of the two parental chromosomes. This is brought about by epigenetic instructions--imprints--that are laid down in the parental germ cells. Imprinting is a particularly important genetic mechanism in mammals, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother. Consistent with this view is the fact that imprinted genes tend to affect growth in the womb and behaviour after birth. Aberrant imprinting disturbs development and is the cause of various disease syndromes. The study of imprinting also provides new insights into epigenetic gene modification during development.

2,212 citations