scispace - formally typeset
Search or ask a question
Author

Kevin Duh

Bio: Kevin Duh is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Machine translation & Language model. The author has an hindex of 38, co-authored 205 publications receiving 5369 citations. Previous affiliations of Kevin Duh include University of Washington & Nara Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel reordering method for efficient two-step Japanese-to-English statistical machine translation (SMT) that isolates reordering from SMT and solves it after lexical translation, and empirically reduces the decoding time of the accurate but slow syntax-based SMT by its good approximation using intermediate HFE.
Abstract: This article proposes a novel reordering method for efficient two-step Japanese-to-English statistical machine translation (SMT) that isolates reordering from SMT and solves it after lexical translation. This reordering problem, called post-ordering, is solved as an SMT problem from Head-Final English (HFE) to English. HFE is syntax-based reordered English that is very successfully used for reordering with English-to-Japanese SMT. The proposed method incorporates its advantage into the reverse direction, Japanese-to-English, and solves the post-ordering problem by accurate syntax-based SMT with target language syntax. Two-step SMT with the proposed post-ordering empirically reduces the decoding time of the accurate but slow syntax-based SMT by its good approximation using intermediate HFE. The proposed method improves the decoding speed of syntax-based SMT decoding by about six times with comparable translation accuracy in Japanese-to-English patent translation experiments.

11 citations

Proceedings ArticleDOI
01 Apr 2018
TL;DR: This paper propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context (both document and sentence level information) than prior work, with further improvements gained by utilizing adaptive classification thresholds.
Abstract: Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context – both document and sentence level information – than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets.

11 citations

Posted Content
TL;DR: The authors proposed an attention-based model that treats AMR parsing as sequence-to-graph transduction, which can be effectively trained with a limited amount of labeled AMR data.
Abstract: We propose an attention-based model that treats AMR parsing as sequence-to-graph transduction. Unlike most AMR parsers that rely on pre-trained aligners, external semantic resources, or data augmentation, our proposed parser is aligner-free, and it can be effectively trained with limited amounts of labeled AMR data. Our experimental results outperform all previously reported SMATCH scores, on both AMR 2.0 (76.3% F1 on LDC2017T10) and AMR 1.0 (70.2% F1 on LDC2014T12).

10 citations

Posted Content
TL;DR: This work argues for a reconsideration of the charCNN, based on cross-lingual improvements on low-resource data, and finds that in most cases, using both BPE and a charCNN performs best, while in Hebrew, using acharCNN over words is best.
Abstract: Neural Machine Translation (NMT) in low-resource settings and of morphologically rich languages is made difficult in part by data sparsity of vocabulary words Several methods have been used to help reduce this sparsity, notably Byte-Pair Encoding (BPE) and a character-based CNN layer (charCNN) However, the charCNN has largely been neglected, possibly because it has only been compared to BPE rather than combined with it We argue for a reconsideration of the charCNN, based on cross-lingual improvements on low-resource data We translate from 8 languages into English, using a multi-way parallel collection of TED transcripts We find that in most cases, using both BPE and a charCNN performs best, while in Hebrew, using a charCNN over words is best

10 citations


Cited by
More filters
28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: PyTorch as discussed by the authors is a machine learning library that provides an imperative and Pythonic programming style that makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs.
Abstract: Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it provides an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several common benchmarks.

12,767 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings Article
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Proceedings Article
01 Jan 2019
TL;DR: This paper details the principles that drove the implementation of PyTorch and how they are reflected in its architecture, and explains how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance.
Abstract: Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it was designed from first principles to support an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several commonly used benchmarks.

10,045 citations