scispace - formally typeset
Search or ask a question
Author

Kevin Duh

Bio: Kevin Duh is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Machine translation & Language model. The author has an hindex of 38, co-authored 205 publications receiving 5369 citations. Previous affiliations of Kevin Duh include University of Washington & Nara Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors proposed an automated common-sense inference based on an extension of recognizing textual entailment: predicting ordinal human responses on the subjective likelihood of an inference holding in a given context.
Abstract: Humans have the capacity to draw common-sense inferences from natural language: various things that are likely but not certain to hold based on established discourse, and are rarely stated explicitly. We propose an evaluation of automated common-sense inference based on an extension of recognizing textual entailment: predicting ordinal human responses on the subjective likelihood of an inference holding in a given context. We describe a framework for extracting common-sense knowledge from corpora, which is then used to construct a dataset for this ordinal entailment task. We train a neural sequence-to-sequence model on this dataset, which we use to score and generate possible inferences. Further, we annotate subsets of previously established datasets via our ordinal annotation protocol in order to then analyze the distinctions between these and what we have constructed.

127 citations

Journal ArticleDOI
TL;DR: Four different approaches to morphology-based language modeling are presented, including a novel technique called factored language models, and results are presented for both rescoring and first-pass recognition experiments.

120 citations

Proceedings ArticleDOI
08 Sep 2014
TL;DR: An exploratory analysis aiming to investigate methods for studying and visualizing changes in word meaning over time, and proposes a framework for exploring semantic change at the lexical level, at the contrastive-pair level, and at the sentiment orientation level.
Abstract: Recently, large amounts of historical texts have been digitized and made accessible to the public. Thanks to this, for the first time, it became possible to analyze evolution of language through the use of automatic approaches. In this paper, we show the results of an exploratory analysis aiming to investigate methods for studying and visualizing changes in word meaning over time. In particular, we propose a framework for exploring semantic change at the lexical level, at the contrastive-pair level, and at the sentiment orientation level. We demonstrate several kinds of NLP approaches that altogether give users deeper understanding of word evolution. We use two diachronic corpora that are currently the largest available historical language corpora. Our results indicate that the task is feasible and satisfactory outcomes can be already achieved by using simple approaches.

118 citations

Proceedings ArticleDOI
08 Oct 2004
TL;DR: This paper explores the use of morphology-based language models at different stages in a speech recognition system for conversational Arabic and evaluates the techniques on a large-vocabulary recognition task and demonstrates that they lead to perplexity and word error rate reductions.
Abstract: : Language modeling is a difficult problem for languages with rich morphology. In this paper we investigate the use of morphology-based language models at different stages in a speech recognition system for conversational Arabic. Class-based and single-stream factored language models using morphological word representations are applied within an N-best list rescoring framework. In addition, we explore the use of factored language models in first-pass recognition, which is facilitated by two novel procedures: the data-driven optimization of a multi-stream language model structure, and the conversion of a factored language model to a standard word-based model. We evaluate these techniques on a large-vocabulary recognition task and demonstrate that they lead to perplexity and word error rate reductions.

118 citations

Proceedings ArticleDOI
20 Jul 2008
TL;DR: A framework for transductive learning of ranking functions is presented and it is shown that the answer is affirmative that unlabeled (test) data can be exploited to improve ranking performance.
Abstract: Ranking algorithms, whose goal is to appropriately order a set of objects/documents, are an important component of information retrieval systems. Previous work on ranking algorithms has focused on cases where only labeled data is available for training (i.e. supervised learning). In this paper, we consider the question whether unlabeled (test) data can be exploited to improve ranking performance. We present a framework for transductive learning of ranking functions and show that the answer is affirmative. Our framework is based on generating better features from the test data (via KernelPCA) and incorporating such features via Boosting, thus learning different ranking functions adapted to the individual test queries. We evaluate this method on the LETOR (TREC, OHSUMED) dataset and demonstrate significant improvements.

110 citations


Cited by
More filters
28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: PyTorch as discussed by the authors is a machine learning library that provides an imperative and Pythonic programming style that makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs.
Abstract: Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it provides an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several common benchmarks.

12,767 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings Article
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Proceedings Article
01 Jan 2019
TL;DR: This paper details the principles that drove the implementation of PyTorch and how they are reflected in its architecture, and explains how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance.
Abstract: Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it was designed from first principles to support an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several commonly used benchmarks.

10,045 citations