scispace - formally typeset
Search or ask a question
Author

Kevin J. Bowers

Bio: Kevin J. Bowers is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Laser & Magnetic reconnection. The author has an hindex of 36, co-authored 99 publications receiving 7197 citations. Previous affiliations of Kevin J. Bowers include D. E. Shaw Research & University of California, Berkeley.


Papers
More filters
Proceedings ArticleDOI
11 Nov 2006
TL;DR: This work presents several new algorithms and implementation techniques that significantly accelerate parallel MD simulations compared with current state-of-the-art codes, including a novel parallel decomposition method and message-passing techniques that reduce communication requirements, as well as novel communication primitives that further reduce communication time.
Abstract: Although molecular dynamics (MD) simulations of biomolecular systems often run for days to months, many events of great scientific interest and pharmaceutical relevance occur on long time scales that remain beyond reach. We present several new algorithms and implementation techniques that significantly accelerate parallel MD simulations compared with current stateof- the-art codes. These include a novel parallel decomposition method and message-passing techniques that reduce communication requirements, as well as novel communication primitives that further reduce communication time. We have also developed numerical techniques that maintain high accuracy while using single precision computation in order to exploit processor-level vector instructions. These methods are embodied in a newly developed MD code called Desmond that achieves unprecedented simulation throughput and parallel scalability on commodity clusters. Our results suggest that Desmond?s parallel performance substantially surpasses that of any previously described code. For example, on a standard benchmark, Desmond?s performance on a conventional Opteron cluster with 2K processors slightly exceeded the reported performance of IBM?s Blue Gene/L machine with 32K processors running its Blue Matter MD code.

2,035 citations

Journal ArticleDOI
01 Jul 2008
TL;DR: A massively parallel machine called Anton is described, which should be capable of executing millisecond-scale classical MD simulations of such biomolecular systems and has been designed to use both novel parallel algorithms and special-purpose logic to dramatically accelerate those calculations that dominate the time required for a typical MD simulation.
Abstract: The ability to perform long, accurate molecular dynamics (MD) simulations involving proteins and other biological macro-molecules could in principle provide answers to some of the most important currently outstanding questions in the fields of biology, chemistry, and medicine. A wide range of biologically interesting phenomena, however, occur over timescales on the order of a millisecond---several orders of magnitude beyond the duration of the longest current MD simulations. We describe a massively parallel machine called Anton, which should be capable of executing millisecond-scale classical MD simulations of such biomolecular systems. The machine, which is scheduled for completion by the end of 2008, is based on 512 identical MD-specific ASICs that interact in a tightly coupled manner using a specialized highspeed communication network. Anton has been designed to use both novel parallel algorithms and special-purpose logic to dramatically accelerate those calculations that dominate the time required for a typical MD simulation. The remainder of the simulation algorithm is executed by a programmable portion of each chip that achieves a substantial degree of parallelism while preserving the flexibility necessary to accommodate anticipated advances in physical models and simulation methods.

778 citations

Journal ArticleDOI
TL;DR: In this article, Petaflop-scale simulations of the evolution of turbulent magnetic reconnection in a three-dimensional plasma indicate that it proceeds in a way that is dramatically different from classical theory.
Abstract: Magnetic reconnection is important to the dynamics of many astrophysical and fusion plasmas but our understanding of it is incomplete. Petaflop-scale simulations of the evolution of turbulent magnetic reconnection in a three-dimensional plasma indicate that it proceeds in a way that is dramatically different from classical theory.

580 citations

Journal ArticleDOI
TL;DR: VPIC has enabled previously intractable simulations in numerous areas of plasma physics, including magnetic reconnection and laser plasma interactions; next generation supercomputers like Roadrunner will enable further advances.
Abstract: The algorithms, implementation details, and applications of VPIC, a state-of-the-art first principles 3D electromagnetic relativistic kinetic particle-in-cell code, are discussed. Unlike most codes, VPIC is designed to minimize data motion, as, due to physical limitations (including the speed of light!), moving data between and even within modern microprocessors is more time consuming than performing computations. As a result, VPIC has achieved unprecedented levels of performance. For example, VPIC can perform ∼0.17 billion cold particles pushed and charge conserving accumulated per second per processor on IBM’s Cell microprocessor—equivalent to sustaining Los Alamos’s planned Roadrunner supercomputer at ∼0.56 petaflop (quadrillion floating point operations per second). VPIC has enabled previously intractable simulations in numerous areas of plasma physics, including magnetic reconnection and laser plasma interactions; next generation supercomputers like Roadrunner will enable further advances.

444 citations

Proceedings ArticleDOI
14 Nov 2009
TL;DR: Anton's performance when executing actual MD simulations whose accuracy has been validated against both existing MD software and experimental observations is reported, allowing the observation of aspects of protein dynamics that were previously inaccessible to both computational and experimental study.
Abstract: Anton is a recently completed special-purpose supercomputer designed for molecular dynamics (MD) simulations of biomolecular systems. The machine's specialized hardware dramatically increases the speed of MD calculations, making possible for the first time the simulation of biological molecules at an atomic level of detail for periods on the order of a millisecond---about two orders of magnitude beyond the previous state of the art. Anton is now running simulations on a timescale at which many critically important, but poorly understood phenomena are known to occur, allowing the observation of aspects of protein dynamics that were previously inaccessible to both computational and experimental study. Here, we report Anton's performance when executing actual MD simulations whose accuracy has been validated against both existing MD software and experimental observations. We also discuss the manner in which novel algorithms have been coordinated with Anton's co-designed, application-specific hardware to achieve these results.

414 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A new implementation of the molecular simulation toolkit GROMACS is presented which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines.
Abstract: Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions Not only does this combination of a

14,032 citations

Journal ArticleDOI
TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.

12,985 citations