scispace - formally typeset
Search or ask a question
Author

Kevin Ronald

Bio: Kevin Ronald is an academic researcher from University of Strathclyde. The author has contributed to research in topics: Gyrotron & Microwave. The author has an hindex of 36, co-authored 384 publications receiving 4359 citations. Previous affiliations of Kevin Ronald include Cockcroft Institute & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a cylindrical waveguide with a helical corrugation of the inner surface is proposed for a gyrotron traveling wave tube (gyro-TWT).
Abstract: A new microwave system in the form of a cylindrical waveguide with a helical corrugation of the inner surface is proposed for a gyrotron traveling wave tube (gyro-TWT). The corrugation radically changes the wave dispersion in the region of small axial wave numbers. This allows significant reduction in the sensitivity of the amplifier to the electron velocity spread and an increase in its frequency bandwidth. An X-band gyro-TWT operating at the second cyclotron harmonic with a 200-keV, 25-A electron beam produced an output power of 1 MW, corresponding to a gain of 23 dB and an efficiency of 20%.

218 citations

Journal ArticleDOI
TL;DR: The coupling between the second harmonic cyclotron mode of a gyrating electron beam and the radiation field occurred in the region of near infinite phase velocity over a broad bandwidth by using a cylindrical waveguide with a helical corrugation on its internal surface.
Abstract: First bandwidth measurements of a novel gyrotron amplifier are presented The coupling between the second harmonic cyclotron mode of a gyrating electron beam and the radiation field occurred in the region of near infinite phase velocity over a broad bandwidth by using a cylindrical waveguide with a helical corrugation on its internal surface With a beam energy of 185 keV, the amplifier achieved a maximum output power of 11 MW, saturated gain of 37 dB, linear gain of 47 dB, saturated bandwidth of 84 to 104 GHz ( $21%$ relative bandwidth), and an efficiency of $29%$, in good agreement with theory

217 citations

Journal ArticleDOI
TL;DR: The gyro-BWO generated a maximum output power of 12 kW when driven by a 40 kV, 1.5 A, annular-shaped large-orbit electron beam and achieved a frequency tuning band of 88-102 by adjusting the cavity magnetic field.
Abstract: Experimental results are presented of the first successful gyrotron backward wave oscillator (gyro-BWO) with continuous frequency tuning near the low-terahertz region. A helically corrugated interaction region was used to allow efficient interaction over a wide frequency band at the second harmonic of the electron cyclotron frequency without parasitic output. The gyro-BWO generated a maximum output power of 12 kW when driven by a 40 kV, 1.5 A, annular-shaped large-orbit electron beam and achieved a frequency tuning band of 88-102.5 GHz by adjusting the cavity magnetic field. The performance of the gyro-BWO is consistent with 3D particle-in-cell numerical simulations.

148 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental results of a thermionic cusp electron gun, used to drive millimeter and submillimeter wave harmonic gyrodevices, were reported using a "smooth" magnetic field reversal formed by two coils.
Abstract: The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a “smooth” magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio α of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC.

119 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental operation of a gyrotron traveling wave amplifier with a helically corrugated waveguide using a thermionic cathode electron gun was presented, where the coupling between the second harmonic cyclotron mode of the gyrating electron beam and the radiation occurred in the region of near infinite phase velocity over a broad frequency band.
Abstract: Experimental operation of a gyrotron traveling wave amplifier with a helically corrugated waveguide using a thermionic cathode electron gun is presented. The coupling between the second harmonic cyclotron mode of the gyrating electron beam and the radiation occurred in the region of near infinite phase velocity over a broad frequency band. With an axis-encircling electron beam of pitch factor of ∼1.2, energy of 185keV, and current of 6.0A, the amplifier achieved an output power of 220kW, saturated gain of 24dB, saturated bandwidth of 8.4to10.4GHz, and an interaction efficiency of 20%.

107 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations

Journal ArticleDOI
TL;DR: This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.
Abstract: In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power, and low mass requirements. FSO communication uses optical carrier in the near infrared band to establish either terrestrial links within the Earth’s atmosphere or inter-satellite/deep space links or ground-to-satellite/satellite-to-ground links. It also finds its applications in remote sensing, radio astronomy, military, disaster recovery, last mile access, backhaul for wireless cellular networks, and many more. However, despite of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering, and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of this paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. The latter part of this paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers (link, network, or transport layer) to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.

970 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations