scispace - formally typeset
Search or ask a question
Author

Khaled Ahmed

Other affiliations: Conexant, Applied Materials, LG Display  ...read more
Bio: Khaled Ahmed is an academic researcher from Intel. The author has contributed to research in topics: Gate dielectric & Gate oxide. The author has an hindex of 23, co-authored 118 publications receiving 2518 citations. Previous affiliations of Khaled Ahmed include Conexant & Applied Materials.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this paper, a physically based model of structure charge and potential combined with a non-linear least squares fitting technique was used to extract device parameters from measured C-V and I-V data.
Abstract: The measurement of electrical parameters from capacitance-voltage (C-V) and current-voltage (I-V) curves provides a fast means of characterizing oxides in MOS capacitors or transistor structures. For ultra-thin oxides (<2 nm), conventional, well-established techniques must be reconsidered and modified due to several increasingly important physical effects including polysilicon depletion and surface quantum mechanical effects. In this work these effects have been incorporated into a rapid analysis program for extracting ultra-thin oxide parameters from measured C-V and I-V data. The technique uses a physically based model of structure charge and potential combined with a non-linear least squares fitting technique to extract device parameters.

363 citations

Patent
31 Mar 2008
TL;DR: In this paper, a memory device is provided which includes a floating gate polysilicon layer disposed over source/drain regions of a substrate, a silicon oxynitride layer over an inter-poly dielectric stack disposed over a silicon oxide layer, and a control gate poly silicon layer over the second aluminum oxide layer.
Abstract: Embodiments of the invention provide memory devices and methods for forming memory devices. In one embodiment, a memory device is provided which includes a floating gate polysilicon layer disposed over source/drain regions of a substrate, a silicon oxynitride layer disposed over the floating gate polysilicon layer, a first aluminum oxide layer disposed over the silicon oxynitride layer, a hafnium silicon oxynitride layer disposed over the first aluminum oxide layer, a second aluminum oxide layer disposed over the hafnium silicon oxynitride layer, and a control gate polysilicon layer disposed over the second aluminum oxide layer. In another embodiment, a memory device is provided which includes a control gate polysilicon layer disposed over an inter-poly dielectric stack disposed over a silicon oxide layer disposed over the floating gate polysilicon layer. The inter-poly dielectric stack contains two silicon oxynitride layers separated by a silicon nitride layer.

228 citations

Journal ArticleDOI
TL;DR: In this article, the effect of dielectric constant and barrier height on the WKB modeled tunnel currents of MOS capacitors with effective oxide thickness of 2.0 nm is described.
Abstract: The effect of dielectric constant and barrier height on the WKB modeled tunnel currents of MOS capacitors with effective oxide thickness of 2.0 nm is described. We first present the WKB numerical model used to determine the tunneling currents. The results of this model indicate that alternative dielectrics with higher dielectric constants show lower tunneling currents than SiO/sub 2/ at expected operating voltages. The results of SiO/sub 2//alternative dielectric stacks indicate currents which are asymmetric with electric field direction. The tunneling current of these stacks at low biases decreases with decreasing SiO/sub 2/ thickness. Furthermore, as the dielectric constant of an insulator increased, the effect of a thin layer of SiO/sub 2/ on the current characteristics of the dielectric stack increases.

172 citations

Journal ArticleDOI
TL;DR: In this article, the sensitivity of extracted oxide thickness to series resistance and gate leakage was demonstrated, based on high-frequency capacitance-voltage (C-V) measurements on ultrathin oxide metaloxide-semiconductor (MOS) capacitors.
Abstract: High-frequency capacitance-voltage (C-V) measurements have been made on ultrathin oxide metal-oxide-semiconductor (MOS) capacitors. The sensitivity of extracted oxide thickness to series resistance and gate leakage is demonstrated. Guidelines are outlined for reliable and accurate estimation of oxide thickness from C-V measurements for oxides down to 1.4 nm.

162 citations

Proceedings ArticleDOI
01 Apr 2007
TL;DR: In this article, negative bias temperature instability (NBTI) was studied in thin and thick PNO and thin TNO Si-oxynitride devices having varying EOT.
Abstract: Negative bias temperature instability (NBTI) is studied in plasma (PNO) and thermal (TNO) Si-oxynitride devices having varying EOT. Threshold voltage shift (DeltaVT) and its field (EOX), temperature (T) and time (t) dependencies obtained from no-delay on-the-fly linear drain current (IDLIN) measurements are carefully compared to that obtained from charge pumping (CP). It is shown that thin and thick PNO and thin TNO devices show very similar NBTI behavior, which can primarily be attributed to generation of interface traps (DeltaNIT). Thicker TNO devices show different NBTI behavior, and can be attributed to additional contribution from hole trapping (DeltaNh) in pre-existing bulk traps. A physics based model is developed to explain the experimental results.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent progress and current scientific understanding of ultrathin (<4 nm) SiO2 and Si-O-N (silicon oxynitride) gate dielectrics on Si-based devices.
Abstract: The outstanding properties of SiO2, which include high resistivity, excellent dielectric strength, a large band gap, a high melting point, and a native, low defect density interface with Si, are in large part responsible for enabling the microelectronics revolution. The Si/SiO2 interface, which forms the heart of the modern metal–oxide–semiconductor field effect transistor, the building block of the integrated circuit, is arguably the worlds most economically and technologically important materials interface. This article summarizes recent progress and current scientific understanding of ultrathin (<4 nm) SiO2 and Si–O–N (silicon oxynitride) gate dielectrics on Si based devices. We will emphasize an understanding of the limits of these gate dielectrics, i.e., how their continuously shrinking thickness, dictated by integrated circuit device scaling, results in physical and electrical property changes that impose limits on their usefulness. We observe, in conclusion, that although Si microelectronic devices...

747 citations

Patent
16 Feb 2005
TL;DR: In this article, a bypass pipe is connected between the mechanical booster pump and the rest vacuum pumps located at a downstream side of the booster pump to prevent the exhaust gas from diffusing back to the inside of a process chamber.
Abstract: Process gas discharged from a bypass pipe to a gas exhaust system can be prevented from diffusing back to the inside of a process chamber without having to install a dedicated vacuum pump at the downstream side of the bypass pipe. The substrate processing apparatus includes a process chamber accommodating a substrate, a gas supply system supplying process gas from a process gas source to the process chamber for processing the substrate, a gas exhaust system configured to exhaust the process chamber, two or more vacuum pumps installed in series at the gas exhaust system, and a bypass pipe connected between the gas supply system and the gas exhaust system. The most upstream one of the vacuum pumps is a mechanical booster pump, and the bypass pipe is connected between the mechanical booster pump and the rest vacuum pumps located at a downstream side of the mechanical booster pump.

644 citations