scispace - formally typeset
Search or ask a question
Author

Khaled Karrai

Bio: Khaled Karrai is an academic researcher from Ludwig Maximilian University of Munich. The author has contributed to research in topics: Quantum dot & Exciton. The author has an hindex of 45, co-authored 128 publications receiving 8832 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an aluminum coated tapered optical fiber is rigidly attached to one of the prongs of a high Q piezoelectric tuning fork, and the fork is mechanically dithered at its resonance frequency (33 kHz) so that the tip amplitude does not exceed 0.4 nm.
Abstract: An aluminum coated tapered optical fiber is rigidly attached to one of the prongs of a high Q piezoelectric tuning fork. The fork is mechanically dithered at its resonance frequency (33 kHz) so that the tip amplitude does not exceed 0.4 nm. A corresponding piezoelectric signal is measured on electrodes appropriately placed on the prongs. As the tip approaches within 20 nm above the sample surface a 0.1 nN drag force acting on the tip causes the signal to reduce. This signal is used to position the optical fiber tip to about 0 to 25 nm above the sample. Shear forces resulting from the tip‐sample interaction can be quantitatively deduced.

980 citations

Journal ArticleDOI
22 Jun 2000-Nature
TL;DR: It is found that the emission energy changes abruptly whenever an electron is added to the artificial atom, and that the sizes of the jumps reveal a shell structure.
Abstract: Quantum dots or rings are artificial nanometre-sized clusters that confine electrons in all three directions. They can be fabricated in a semiconductor system by embedding an island of low-bandgap material in a sea of material with a higher bandgap. Quantum dots are often referred to as artificial atoms because, when filled sequentially with electrons, the charging energies are pronounced for particular electron numbers; this is analogous to Hund's rules in atomic physics. But semiconductors also have a valence band with strong optical transitions to the conduction band. These transitions are the basis for the application of quantum dots as laser emitters, storage devices and fluorescence markers. Here we report how the optical emission (photoluminescence) of a single quantum ring changes as electrons are added one-by-one. We find that the emission energy changes abruptly whenever an electron is added to the artificial atom, and that the sizes of the jumps reveal a shell structure.

782 citations

Journal ArticleDOI
23 Dec 2004-Nature
TL;DR: Direct experimental evidence for passive (or intrinsic) optical cooling of a micromechanical resonator is reported and cavity-induced photothermal pressure is exploited to quench the brownian vibrational fluctuations of a gold-coated silicon microlever from room temperature down to an effective temperature of 18 K.
Abstract: The prospect of realizing entangled quantum states between macroscopic objects and photons1 has recently stimulated interest in new laser-cooling schemes2,3. For example, laser-cooling of the vibrational modes of a mirror can be achieved by subjecting it to a radiation2 or photothermal4 pressure, actively controlled through a servo loop adjusted to oppose its brownian thermal motion within a preset frequency window. In contrast, atoms can be laser-cooled passively without such active feedback, because their random motion is intrinsically damped through their interaction with radiation5,6,7,8. Here we report direct experimental evidence for passive (or intrinsic) optical cooling of a micromechanical resonator. We exploit cavity-induced photothermal pressure to quench the brownian vibrational fluctuations of a gold-coated silicon microlever from room temperature down to an effective temperature of 18 K. Extending this method to optical-cavity-induced radiation pressure might enable the quantum limit to be attained, opening the way for experimental investigations of macroscopic quantum superposition states1 involving numbers of atoms of the order of 1014.

627 citations

Journal ArticleDOI
28 Apr 2006-Science
TL;DR: Laser cooling of a single electron spin trapped in a semiconductor quantum dot is demonstrated, which corresponds to a spin-state preparation with a fidelity exceeding 99.8% within the framework of quantum information processing.
Abstract: We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.

498 citations

Journal ArticleDOI
TL;DR: A summary of the current state of optomechanics of deformable optical cavities can be found in this article, where the authors identify some of the most important recent developments in the field.
Abstract: Resonant optical cavities such as Fabry–Perot resonators or whispering-gallery structures are subject to radiation pressure pushing their reflecting 'walls' apart. Deformable optical cavities yield to this pressure, but in doing so they in turn affect the stored optical energy, resulting in an optical back-action. For such cavities the optics and the mechanics become strongly coupled, making them fascinating systems in which to explore theories of measurements at the quantum limit. Here we provide a summary of the current state of optomechanics of deformable optical cavities, identifying some of the most important recent developments in the field.

374 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations