scispace - formally typeset
Search or ask a question
Author

Khiam Aik Khor

Bio: Khiam Aik Khor is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Spark plasma sintering & Thermal spraying. The author has an hindex of 68, co-authored 305 publications receiving 14650 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a complete polarization model of a solid oxide fuel cell (SOFC) was presented to eliminate the ambiguity of the suitability of such model when used under different design and operating conditions.

830 citations

Journal ArticleDOI
TL;DR: It was found that the amount of HA in the composite influenced the tensile properties, and the fatigue-life of PEEK-HA composites were dependent on the HA content as well as the applied load.

361 citations

Journal ArticleDOI
TL;DR: In this paper, an anode-supported solid oxide fuel cell (SOFC) was developed, which consists of a Ni-YSZ anode as the cell support, a 45-μm thick YSZ electrolyte and a screen-printed LSM-YSZ/LSM double-layer cathode.

263 citations

Journal ArticleDOI
TL;DR: This paper highlights some of the problems associated with plasma spray coating of HA and suggests that tailoring the powder feedstock morphology and properties through suitable conditioning processes can aid the deposition efficiency and produce an acceptable coating structure.

239 citations

Journal ArticleDOI
TL;DR: In this article, a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges.
Abstract: Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.

229 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of surface modification techniques for titanium and titanium alloys can be found in this article, where the authors have shown that the wear resistance, corrosion resistance, and biological properties can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained.
Abstract: Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, in order to improve the biological, chemical, and mechanical properties, surface modification is often performed. This article reviews the various surface modification technologies pertaining to titanium and titanium alloys including mechanical treatment, thermal spraying, sol–gel, chemical and electrochemical treatment, and ion implantation from the perspective of biomedical engineering. Recent work has shown that the wear resistance, corrosion resistance, and biological properties of titanium and titanium alloys can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of titanium and titanium alloys in the biomedical fields. Some of the recent applications are also discussed in this paper.

3,019 citations

Journal ArticleDOI
TL;DR: In this article, different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed, including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents and permanganate.
Abstract: Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.

2,286 citations

Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
TL;DR: A review of the past, present, and future of the hydroxyapatite (HAp)-based biomaterials from the point of view of preparation of hard tissue replacement implants is presented in this paper.
Abstract: This paper reviews the past, present, and future of the hydroxyapatite (HAp)-based biomaterials from the point of view of preparation of hard tissue replacement implants. Properties of the hard tissues are also described. The mechanical reliability of the pure HAp ceramics is low, therefore it cannot be used as artificial teeth or bones. For these reasons, various HAp-based composites have been fabricated, but only the HAp-coated titanium alloys have found wide application. Among the others, the microstructurally controlled HAp ceramics such as fibers/whiskers-reinforced HAp, fibrous HAp-reinforced polymers, or biomimetically fabricated HAp/collagen composites seem to be the most suitable ceramic materials for the future hard tissue replacement implants.

1,892 citations

Journal ArticleDOI
TL;DR: In this article, the use of electric current to activate the consolidation and reaction-sintering of materials is reviewed with special emphasis of the spark plasma sintering method, which has been used extensively over the past decade with results showing clear benefits over conventional methods.
Abstract: The use of electric current to activate the consolidation and reaction-sintering of materials is reviewed with special emphasis of the spark plasma sintering method. The method has been used extensively over the past decade with results showing clear benefits over conventional methods. The review critically examines the important features of this method and their individual roles in the observed enhancement of the consolidation process and the properties of the resulting materials.

1,855 citations