scispace - formally typeset
Search or ask a question
Author

Ki-Chul Chun

Other affiliations: University of Minnesota
Bio: Ki-Chul Chun is an academic researcher from Samsung. The author has contributed to research in topics: Sense amplifier & Semiconductor memory. The author has an hindex of 15, co-authored 54 publications receiving 1020 citations. Previous affiliations of Ki-Chul Chun include University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: The studies based on the proposed scaling methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material in order to overcome the poor write performance scaling from 22 nm node onwards.
Abstract: This paper explores the scalability of in-plane and perpendicular MTJ based STT-MRAMs from 65 nm to 8 nm while taking into consideration realistic variability effects. We focus on the read and write performances of a STT-MRAM based cache rather than the obvious advantages such as the denser bit-cell and zero static power. An accurate MTJ macromodel capturing key MTJ properties was adopted for efficient Monte Carlo simulations. For the simulation of access devices and peripheral circuitries, ITRS projected transistor parameters were utilized and calibrated using the MASTAR tool that has been widely used in industry. 6T SRAM and STT-MRAM arrays were implemented with aggressive assist schemes to mimic industrial memory designs. A constant JC0·RA/VDD scaling scenario was used which to the first order gives the optimal balance between read and write margins of STT-MRAMs. The thermal stability factor ensuring a 10 year retention time was obtained by adjusting the free layer thickness as well as assuming improvement in the crystalline anisotropy. Our studies based on the proposed scaling methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material in order to overcome the poor write performance scaling from 22 nm node onwards.

322 citations

Journal ArticleDOI
TL;DR: Circuit techniques for enabling a sub-0.9 V logic-compatible embedded DRAM (eDRAM) and Monte Carlo simulations compare the 6-sigma read and write performance of proposed eDRAM against conventional designs are presented.
Abstract: Circuit techniques for enabling a sub-0.9 V logic-compatible embedded DRAM (eDRAM) are presented. A boosted 3T gain cell utilizes Read Word-line (RWL) preferential boosting to increase read margin and improve data retention time. Read speed is enhanced with a hybrid current/voltage sense amplifier that allows the Read Bit-line (RBL) to remain close to VDD. A regulated bit-line write scheme for driving the Write Bit-line (WBL) is equipped with a steady-state storage node voltage monitor to overcome the data `1' write disturbance problem of the PMOS gain cell without introducing another boosted supply for the Write Word-line (WWL) over-drive. An adaptive and die-to-die adjustable read reference bias generator is proposed to cope with PVT variations. Monte Carlo simulations compare the 6-sigma read and write performance of proposed eDRAM against conventional designs. Measurement results from a 64 kb eDRAM test chip implemented in a 65 nm low-leakage CMOS process show a 1.25 ms data retention time with a 2 ns random cycle time at 0.9 V, 85°C, and a 91.3 μW per Mb static power dissipation at 1.0 V, 85°C.

108 citations

Journal ArticleDOI
TL;DR: Circuit techniques for enhancing the retention time and random cycle of logic-compatible embedded DRAMs (eDRAMs) are presented and a half-swing write bit-line (WBL) scheme is adopted to improve the WBL speed and reduce its power dissipation during write-back operation.
Abstract: Circuit techniques for enhancing the retention time and random cycle of logic-compatible embedded DRAMs (eDRAMs) are presented. An asymmetric 2T gain cell utilizes the gate and junction leakages of a PMOS write device to maintain a high data `1' voltage level which enables fast read access using an NMOS read device. A current-mode sense amplifier (C-S/A) featuring a cross-coupled PMOS latch and pseudo-PMOS diode pairs is proposed to overcome the innate problem of small read bit-line (RBL) voltage swing in 2T eDRAMs with improved voltage headroom and better impedance matching under process-voltage-temperature (PVT) variations. A half-swing write bit-line (WBL) scheme is adopted to improve the WBL speed by 33% and reduce its power dissipation by 25% during write-back operation with no effect on retention time. A stepped write word-line (WWL) driver reduces the current drawn from the boosted high and low supplies by 67%. A 192 kb eDRAM test chip with 512 cells-per-BL implemented in a 65 nm low-power (LP) CMOS process shows a random cycle frequency and latency of 667 MHz and 1.65 ns, respectively, at 1.1 V and 85 × °C. The measured refresh period at a 99.9% bit yield condition was 110 μs which is comparable to that of recently published 1T1C eDRAM designs.

99 citations

Proceedings Article
16 Jun 2009
TL;DR: Circuit techniques for enabling a sub-0.9V logic-compatible embedded DRAM (eDRAM) with regulated bit-line write scheme and a read reference bias generator are presented to cope with write disturbance issues and PVT variations.
Abstract: Circuit techniques for enabling a sub-0.9V logic-compatible embedded DRAM (eDRAM) are presented. A boosted 3T gain cell increases read margin, enhances read speed and improves data retention time. A regulated bit-line write scheme and a read reference bias generator are proposed to cope with write disturbance issues and PVT variations. Measurement results from a 64kb eDRAM test chip implemented in a 65nm low-leakage CMOS process demonstrate the effectiveness of the proposed techniques.

46 citations

Journal ArticleDOI
TL;DR: A truly logic-compatible gain cell eDRAM macro with no boosted supplies is presented and a repair scheme based on a single-ended 7T SRAM has features such as a local differential write and shared control with the main 2T1C array.
Abstract: A truly logic-compatible gain cell eDRAM macro with no boosted supplies is presented. A 2T1C gain cell implemented only with regular thin oxide devices consists of an asymmetric 2T cell and a coupling PMOS capacitor. The PMOS capacitor ensures proper operation even without a boosted supply by utilizing a beneficial coupling for read and a preferential boosting for write. A repair scheme based on a single-ended 7T SRAM has features such as a local differential write and shared control with the main 2T1C array. A storage voltage monitor is proposed to track the retention characteristics of a gain cell eDRAM under PVT variations and to adjust its refresh rate adaptively. A 128 kb eDRAM test chip implemented in a 65 nm Low-Power (LP) process operates at a random access frequency of 714 MHz with a static power dissipation of 161.8 μW per Mb for a 500 μs refresh rate at 1.1 V and 85°C.

43 citations


Cited by
More filters
Journal ArticleDOI
15 Jul 2015
TL;DR: A survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks is presented and the advantages and challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems are presented.
Abstract: A striking difference between brain-inspired neuromorphic processors and current von Neumann processor architectures is the way in which memory and processing is organized. As information and communication technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper, we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multineuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.

589 citations

Journal ArticleDOI
TL;DR: A comprehensive review on emerging artificial neuromorphic devices and their applications is offered, showing that anion/cation migration-based memristive devices, phase change, and spintronic synapses have been quite mature and possess excellent stability as a memory device, yet they still suffer from challenges in weight updating linearity and symmetry.
Abstract: The rapid development of information technology has led to urgent requirements for high efficiency and ultralow power consumption. In the past few decades, neuromorphic computing has drawn extensive attention due to its promising capability in processing massive data with extremely low power consumption. Here, we offer a comprehensive review on emerging artificial neuromorphic devices and their applications. In light of the inner physical processes, we classify the devices into nine major categories and discuss their respective strengths and weaknesses. We will show that anion/cation migration-based memristive devices, phase change, and spintronic synapses have been quite mature and possess excellent stability as a memory device, yet they still suffer from challenges in weight updating linearity and symmetry. Meanwhile, the recently developed electrolyte-gated synaptic transistors have demonstrated outstanding energy efficiency, linearity, and symmetry, but their stability and scalability still need to be optimized. Other emerging synaptic structures, such as ferroelectric, metal–insulator transition based, photonic, and purely electronic devices also have limitations in some aspects, therefore leading to the need for further developing high-performance synaptic devices. Additional efforts are also demanded to enhance the functionality of artificial neurons while maintaining a relatively low cost in area and power, and it will be of significance to explore the intrinsic neuronal stochasticity in computing and optimize their driving capability, etc. Finally, by looking into the correlations between the operation mechanisms, material systems, device structures, and performance, we provide clues to future material selections, device designs, and integrations for artificial synapses and neurons.

373 citations

Journal ArticleDOI
TL;DR: The studies based on the proposed scaling methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material in order to overcome the poor write performance scaling from 22 nm node onwards.
Abstract: This paper explores the scalability of in-plane and perpendicular MTJ based STT-MRAMs from 65 nm to 8 nm while taking into consideration realistic variability effects. We focus on the read and write performances of a STT-MRAM based cache rather than the obvious advantages such as the denser bit-cell and zero static power. An accurate MTJ macromodel capturing key MTJ properties was adopted for efficient Monte Carlo simulations. For the simulation of access devices and peripheral circuitries, ITRS projected transistor parameters were utilized and calibrated using the MASTAR tool that has been widely used in industry. 6T SRAM and STT-MRAM arrays were implemented with aggressive assist schemes to mimic industrial memory designs. A constant JC0·RA/VDD scaling scenario was used which to the first order gives the optimal balance between read and write margins of STT-MRAMs. The thermal stability factor ensuring a 10 year retention time was obtained by adjusting the free layer thickness as well as assuming improvement in the crystalline anisotropy. Our studies based on the proposed scaling methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material in order to overcome the poor write performance scaling from 22 nm node onwards.

322 citations

Journal ArticleDOI
TL;DR: In this paper, the TMR effect was applied to a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its readout using the tunnelling magnetoresistance (TMR) effect.
Abstract: We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 1011 A/m2 in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memory cell.

321 citations

Journal ArticleDOI
01 Nov 2018
TL;DR: In this article, the authors show that the threshold current density of spin-orbit torque switching can be reduced by increasing the spin-transfer torque current density, and thus an optimal point for low-power perpendicular magnetic tunnel junction switching can also be found by tuning the two current densities.
Abstract: Magnetization switching in magnetic tunnel junctions using spin-transfer torque and spin–orbit torque is key to the development of future spintronic memories. However, both switching mechanisms suffer from intrinsic limitations. In particular, the switching current in spin-transfer torque devices needs to be lowered, whereas an external magnetic field is required for spin–orbit torque devices to achieve deterministic switching in perpendicular magnetic tunnel junctions. Here, we experimentally demonstrate field-free switching of three-terminal perpendicular-anisotropy magnetic tunnel junction devices through the interaction between spin–orbit and spin-transfer torques. We show that the threshold current density of spin–orbit torque switching can be reduced by increasing the spin-transfer torque current density, and thus an optimal point for low-power perpendicular magnetic tunnel junction switching can be found by tuning the two current densities. Furthermore, and due to this interplay, low-power switching in two-terminal perpendicular magnetic tunnel junctions without an external magnetic field is also achieved. The interplay between spin–orbit and spin-transfer torques can be used to develop a low-power route to magnetization switching of perpendicular magnetic tunnel junctions without an external magnetic field.

281 citations