scispace - formally typeset
Search or ask a question
Author

Ki-Whan Chi

Bio: Ki-Whan Chi is an academic researcher from University of Ulsan. The author has contributed to research in topics: Halogenation & Supramolecular chemistry. The author has an hindex of 38, co-authored 180 publications receiving 5007 citations. Previous affiliations of Ki-Whan Chi include Siberian State Medical University & Novosibirsk State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The studies have shown that the extent of self-organization in the coordination-driven self-assembly of both 2D polygons and 3D polyhedra ranges from no organization to amplified organization and all the way to the absolute self- Organization of discrete supramolecular assemblies.
Abstract: Self-assembly allows for the preparation of highly complex molecular and supramolecular systems from relatively simple starting materials. Typically, self-assembled supramolecules are constructed by combining complementary pairs of two highly symmetric molecular components, thus limiting the chances of forming unwanted side products. Combining asymmetric molecular components or multiple complementary sets of molecules in one complex mixture can produce myriad different ordered and disordered supramolecular assemblies. Alternatively, spontaneous self-organization phenomena can promote the formation of specific product(s) out of a collection of multiple possibilities. Self-organization processes are common throughout much of nature and are especially common in biological systems. Recently, researchers have studied self-organized self-assembly in purely synthetic systems. This Account describes our investigations of self-organization in the coordination-driven self-assembly of platinum(II)-based metallosupra...

635 citations

Journal ArticleDOI
TL;DR: Recent developments in coordination-driven self-assembly to form tunable supramolecular coordination complexes (SCCs) with biomedical applications confirm that supramolescular scaffolds have relevance to a wide variety of biochemical and biomedical targets.
Abstract: Metal ions and metal complexes with organic molecules are ubiquitous in nature. Bulk metal ions of Na, K, Mg, and Ca constitute as much as 1% of human body weight. The remaining trace ions, most commonly of Fe, Ni, Cu, Mn, Zn, Co, Mo, and V, make up ∼0.01% by weight, but their importance in biological processes cannot be overstated.Although nature is limited to the use of bioavailable metal ions, many rarer transition metals can elicit novel biological responses when they interact with biomolecules. For this reason, metal–biomolecule complexes are of interest in medicinal applications. A well-known example is cisplatin, which contains Pt, rare in nature, but highly effective in this context as an anticancer drug in the form of cis-Pt(NH3)2Cl2 and analogous Pt(II) complexes. This and other examples have led to strong interest in discovering new metalloanticancer drugs.In this Account, we describe recent developments in this area, particularly, using coordination-driven self-assembly to form tunable supramo...

407 citations

Journal ArticleDOI
TL;DR: A new, simple, and effective method for the diazotization of a wide range of arylamines has been developed by using a polymer-supported diazOTization agent in the presence of p-toluenesulfonic acid.

176 citations

Journal ArticleDOI
TL;DR: Novel M(3)L(2) trigonal cages via the coordination-driven self-assembly of preorganized metalloligands containing octahedral aluminum(III), gallium( III), or ruthenium(II) centers is described, which can be used as the basis for the development of selective and discriminatory turn-off fluorescent sensors for nitroaromatics.
Abstract: The design and preparation of novel M3L2 trigonal cages via the coordination-driven self-assembly of preorganized metalloligands containing octahedral aluminum(III), gallium(III), or ruthenium(II) centers is described. When tritopic or dinuclear linear metalloligands and appropriate complementary subunits are employed, M3L2 trigonal-bipyramidal and trigonal-prismatic cages are self-assembled under mild conditions. These three-dimensional cages were characterized with multinuclear NMR spectroscopy (1H and 31P) and high-resolution electrospray ionization mass spectrometry. The structure of one such trigonal-prismatic cage, self-assembled from an arene ruthenium metalloligand, was confirmed via single-crystal X-ray crystallography. The fluorescent nature of these prisms, due to the presence of their electron-rich ethynyl functionalities, prompted photophysical studies, which revealed that electron-deficient nitroaromatics are effective quenchers of the cages’ emission. Excited-state charge transfer from the ...

165 citations

Journal ArticleDOI
TL;DR: The dynamic catenation process is reversible and can be switched off and on in a controllable manner by successive addition of KPF(6) and 18-crown-6, as monitored by (1)H and (31)P NMR spectroscopy.
Abstract: We describe the formation of a suite of [3]catenanes via multicomponent coordination-driven self-assembly and host–guest complexation of a rectangular scaffold comprising a 90° Pt-based acceptor building block with a pseudorotaxane bis(pyridinium)ethane/dibenzo-24-crown-8 linear dipyridyl ligand and three dicarboxylate donors. The doubly threaded [3]catenanes are formed from a total of 10 molecular components from four unique species. Furthermore, the dynamic catenation process is reversible and can be switched off and on in a controllable manner by successive addition of KPF6 and 18-crown-6, as monitored by 1H and 31P NMR spectroscopy.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In the early 1960s, the discovery of crown ethers and spherands by Pedersen, Lehn, and Cram3 led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, hydrophilic and hydrophobic interactions to achieve these highly complex and often symmetrical architectures as mentioned in this paper.
Abstract: Fascination with supramolecular chemistry over the last few decades has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nanoscopic dimensions Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries both inside and between the fields of chemistry, physics, and biology This chemistry is of continuing interest for synthetic chemists; partly because of the fascinating physical and chemical properties and the complex and varied aesthetically pleasing structures that supramolecules possess For scientists seeking to design novel molecular materials exhibiting unusual sensing, magnetic, optical, and catalytic properties, and for researchers investigating the structure and function of biomolecules, supramolecular chemistry provides limitless possibilities Thus, it transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field In the early 1960s, the discovery of ‘crown ethers’, ‘cryptands’ and ‘spherands’ by Pedersen,1 Lehn,2 and Cram3 respectively, led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, etc Such ‘programmed’ molecules can thus be self-assembled by utilizing these interactions in a definite algorithm to form large supramolecules that have different physicochemical properties than those of the precursor building blocks Typical systems are designed such that the self-assembly process is kinetically reversible; the individual building blocks gradually funnel towards an ensemble that represents the thermodynamic minimum of the system via numerous association and dissociation steps By tuning various reaction parameters, the reaction equilibrium can be shifted towards the desired product As such, self-assembly has a distinct advantage over traditional, stepwise synthetic approaches when accessing large molecules It is well known that nature has the ability to assemble relatively simple molecular precursors into extremely complex biomolecules, which are vital for life processes Nature’s building blocks possess specific functionalities in configurations that allow them to interact with one another in a deliberate manner Protein folding, nucleic acid assembly and tertiary structure, phospholipid membranes, ribosomes, microtubules, etc are but a selective, representative example of self-assembly in nature that is of critical importance for living organisms Nature makes use of a variety of weak, non-covalent interactions such as hydrogen–bonding, charge–charge, donor–acceptor, π-π, van der Waals, hydrophilic and hydrophobic, etc interactions to achieve these highly complex and often symmetrical architectures In fact, the existence of life is heavily dependent on these phenomena The aforementioned structures provide inspiration for chemists seeking to exploit the ‘weak interactions’ described above to make scaffolds rivaling the complexity of natural systems The breadth of supramolecular chemistry has progressively increased with the synthesis of numerous unique supramolecules each year Based on the interactions used in the assembly process, supramolecular chemistry can be broadly classified in to three main branches: i) those that utilize H-bonding motifs in the supramolecular architectures, ii) processes that primarily use other non-covalent interactions such as ion-ion, ion-dipole, π–π stacking, cation-π, van der Waals and hydrophobic interactions, and iii) those that employ strong and directional metal-ligand bonds for the assembly process However, as the scale and degree of complexity of desired molecules increases, the assembly of small molecular units into large, discrete supramolecules becomes an increasingly daunting task This has been due in large part to the inability to completely control the directionality of the weak forces employed in the first two classifications above Coordination-driven self-assembly, which defines the third approach, affords a greater control over the rational design of 2D and 3D architectures by capitalizing on the predictable nature of the metal-ligand coordination sphere and ligand lability to encode directionality Thus, this third strategy represents an alternative route to better execute the “bottom-up” synthetic strategy for designing molecules of desired dimensions, ranging from a few cubic angstroms to over a cubic nanometer For instance, a wide array of 2D systems: rhomboids, squares, rectangles, triangles, etc, and 3D systems: trigonal pyramids, trigonal prisms, cubes, cuboctahedra, double squares, adamantanoids, dodecahedra and a variety of other cages have been reported As in nature, inherent preferences for particular geometries and binding motifs are ‘encoded’ in certain molecules depending on the metals and functional groups present; these moieties help to control the way in which the building blocks assemble into well-defined, discrete supramolecules4 Since the early pioneering work by Lehn5 and Sauvage6 on the feasibility and usefulness of coordination-driven self-assembly in the formation of infinite helicates, grids, ladders, racks, knots, rings, catenanes, rotaxanes and related species,7 several groups - Stang,8 Raymond,9 Fujita,10 Mirkin,11 Cotton12 and others13,14 have independently developed and exploited novel coordination-based paradigms for the self-assembly of discrete metallacycles and metallacages with well-defined shapes and sizes In the last decade, the concepts and perspectives of coordination-driven self-assembly have been delineated and summarized in several insightful reviews covering various aspects of coordinationdriven self-assembly15 In the last decade, the use of this synthetic strategy has led to metallacages dubbed as “molecular flasks” by Fujita,16 and Raymond and Bergman,17 which due to their ability to encapsulate guest molecules, allowed for the observation of unique chemical phenomena and unusual reactions which cannot be achieved in the conventional gas, liquid or solid phases Furthermore, these assemblies found applications in supramolecular catalysis18,19 and as nanomaterials as developed by Hupp20 and others21,22 This review focuses on the journey of early coordination-driven self-assembly paradigms to more complex and discrete 2D and 3D supramolecular ensembles over the last decade We begin with a discussion of various approaches that have been developed by different groups to assemble finite supramolecular architectures The subsequent sections contain detailed discussions on the synthesis of discrete 2D and 3D systems, their functionalizations and applications

2,388 citations

Journal ArticleDOI
TL;DR: The facile construction of C-E (E = C, N, S, or O) bonds makes Rh(III) catalysis an attractive step-economic approach to value-added molecules from readily available starting materials.
Abstract: Rhodium(III)-catalyzed direct functionalization of C-H bonds under oxidative conditions leading to C-C, C-N, and C-O bond formation is reviewed. Various arene substrates bearing nitrogen and oxygen directing groups are covered in their coupling with unsaturated partners such as alkenes and alkynes. The facile construction of C-E (E = C, N, S, or O) bonds makes Rh(III) catalysis an attractive step-economic approach to value-added molecules from readily available starting materials. Comparisons and contrasts between rhodium(III) and palladium(II)-catalyzed oxidative coupling are made. The remarkable diversity of structures accessible is demonstrated with various recent examples, with a proposed mechanism for each transformation being briefly summarized (critical review, 138 references).

1,899 citations

Journal ArticleDOI
TL;DR: A new iron(III) halide-promoted aza-Prins cyclization between γ,δ-unsaturated tosylamines and aldehydes provides six-membered azacycles in good to excellent yields.
Abstract: A new iron(III) halide-promoted aza-Prins cyclization between γ,δ-unsaturated tosylamines and aldehydes provides six-membered azacycles in good to excellent yields. The process is based on the consecutive generation of γ-unsaturated-iminium ion and further nucleophilic attack by the unsaturated carbon−carbon bond. Homoallyl tosylamine leads to trans-2-alkyl-4-halo-1-tosylpiperidine as the major isomer. In addition, the alkyne aza-Prins cyclization between homopropargyl tosylamine and aldehydes gives 2-alkyl-4-halo-1-tosyl-1,2,5,6-tetrahydropyridines as the only cyclic products. The piperidine ring is widely distributed throughout Nature, e.g., in alkaloids,1 and is an important scaffold for drug discovery, being the core of many pharmaceutically significant compounds.2,3 The syntheses of these type of compounds have been extensively studied in the development of new drugs containing six-membered-ring heterocycles.4 Reactions between N-acyliminium ions and nucleophiles, also described as amidoalkylation or Mannich-type condensations, have been frequently used to introduce substituents at the R-carbon of an amine.5 There are several examples that involve an intramolecular attack of a nucleophilic olefin into an iminium cation for the construction of a heterocyclic ring system.6 Traditionally, the use of hemiaminals or their derivatives as precursors of N-acyliminium intermediates has been a common two-step strategy in these reactions.6a Among this type of cyclization is the aza-Prins cyclization,7 which uses alkenes as intramolecular nucleophile. However, cy† X-ray analysis. E-mail address: malopez@ull.es. (1) (a) Fodor, G. B.; Colasanti, B. Alkaloids: Chemical and Biological PerspectiVes; Pelletier, S. W., Ed.; Wiley: New York, 1985; Vol. 23, pp 1-90. (b) Baliah, V.; Jeyarama, R.; Chandrasekaran, L. Chem. ReV. 1983, 83, 379-423. (2) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679-3681. (3) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. ReV. 2003, 103, 893-930. (4) Buffat, M. G. P. Tetrahedron 2004, 60, 1701-1729 and references therein. (5) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3187- 3856 and references therein. (6) (a) Hiemstra, H.; Speckamp, W. N. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, O., Heathcock, C. H., Eds.; Pergamon: New York, 1991; Vol. 2, pp 1047-1081. (b) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367-4416. (7) (a) Dobbs, A. P.; Guesne, S. J. J.; Hursthouse, M. B.; Coles, S. J. Synlett 2003, 11, 1740-1742. (b) Dobbs, A. P.; Guesne, S. J. J.; Martinove, S.; Coles, S. J.; Hursthouse, M. B. J. Org. Chem. 2003, 68, 7880-7883. (c) Hanessian, S.; Tremblay, M.; Petersen, F. W. J. Am. Chem. Soc. 2004, 126, 6064-6071 and references therein. (d) Dobbs, A. P.; Guesne, S. J. Synlett 2005, 13, 2101-2103. ORGANIC

1,854 citations

Journal ArticleDOI
TL;DR: It is discussed how the described shape-memory polymers show great potential for diverse applications, including in the medical arena, sensors, and actuators, and as dictated by macromolecular details.
Abstract: Shape-memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers due to their useful and fascinating functionality. This review thoroughly examines progress in shape-memory polymers, including the very recent past, achieved by numerous groups around the world and our own research group. Considering all of the shape-memory polymers reviewed, we identify a classification scheme wherein nearly all SMPs may be associated with one of four classes in accordance with their shape fixing and recovering mechanisms and as dictated by macromolecular details. We discuss how the described shape-memory polymers show great potential for diverse applications, including in the medical arena, sensors, and actuators.

1,805 citations