scispace - formally typeset
Search or ask a question
Author

Kieran Milan

Bio: Kieran Milan is an academic researcher from Google. The author has contributed to research in topics: Computer science & Artificial neural network. The author has an hindex of 4, co-authored 4 publications receiving 3520 citations.

Papers
More filters
Posted Content
TL;DR: It is shown that it is possible to overcome the limitation of connectionist models and train networks that can maintain expertise on tasks that they have not experienced for a long time and selectively slowing down learning on the weights important for previous tasks.
Abstract: The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.

3,026 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that it is possible to train networks that can maintain expertise on tasks that they have not experienced for a long time by selectively slowing down learning on the weights important for those tasks.
Abstract: The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially.

2,917 citations

Proceedings Article
01 Jan 2016
TL;DR: The Forget-me-not Process is introduced, an efficient, non-parametric meta-algorithm for online probabilistic sequence prediction for piecewise stationary, repeating sources by taking a Bayesian approach to partition a stream of data into postulated task-specific segments, while simultaneously building a model for each task.
Abstract: We introduce the Forget-me-not Process, an efficient, non-parametric meta-algorithm for online probabilistic sequence prediction for piecewise stationary, repeating sources. Our method works by taking a Bayesian approach to partition a stream of data into postulated task-specific segments, while simultaneously building a model for each task. We provide regret guarantees with respect to piecewise stationary data sources under the logarithmic loss, and validate the method empirically across a range of sequence prediction and task identification problems.

25 citations

Journal ArticleDOI
TL;DR: The recent work on elastic weight consolidation shows that forgetting in neural networks can be alleviated by using a quadratic penalty whose derivation was inspired by Bayesian evidence accumulation, and Dr. Huszar provides an alternative form by following the standard work on expectation propagation using the Laplace approximation.
Abstract: In our recent work on elastic weight consolidation (EWC) (1) we show that forgetting in neural networks can be alleviated by using a quadratic penalty whose derivation was inspired by Bayesian evidence accumulation. In his letter (2), Dr. Huszar provides an alternative form for this penalty by following the standard work on expectation propagation using the Laplace approximation (3). He correctly argues that in cases when more than two tasks are undertaken the two forms of the penalty are different. Dr. Huszar also shows that for a toy linear regression problem his expression appears to be better. We would like to thank Dr. Huszar for pointing out … [↵][1]1To whom correspondence should be addressed. Email: kirkpatrick@google.com. [1]: #xref-corresp-1-1

13 citations

Journal ArticleDOI
TL;DR: In this paper , the authors formulated the task of finding a better sorting algorithm as a single-player game and trained a new deep reinforcement learning agent, AlphaDev, to play this game.
Abstract: Fundamental algorithms such as sorting or hashing are used trillions of times on any given day1. As demand for computation grows, it has become critical for these algorithms to be as performant as possible. Whereas remarkable progress has been achieved in the past2, making further improvements on the efficiency of these routines has proved challenging for both human scientists and computational approaches. Here we show how artificial intelligence can go beyond the current state of the art by discovering hitherto unknown routines. To realize this, we formulated the task of finding a better sorting routine as a single-player game. We then trained a new deep reinforcement learning agent, AlphaDev, to play this game. AlphaDev discovered small sorting algorithms from scratch that outperformed previously known human benchmarks. These algorithms have been integrated into the LLVM standard C++ sort library3. This change to this part of the sort library represents the replacement of a component with an algorithm that has been automatically discovered using reinforcement learning. We also present results in extra domains, showcasing the generality of the approach.

3 citations


Cited by
More filters
Proceedings Article
06 Aug 2017
TL;DR: An algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning is proposed.
Abstract: We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

7,027 citations

Posted Content
TL;DR: It is shown that it is possible to overcome the limitation of connectionist models and train networks that can maintain expertise on tasks that they have not experienced for a long time and selectively slowing down learning on the weights important for previous tasks.
Abstract: The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.

3,026 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that it is possible to train networks that can maintain expertise on tasks that they have not experienced for a long time by selectively slowing down learning on the weights important for those tasks.
Abstract: The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially.

2,917 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this paper, the authors introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively.
Abstract: A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.

2,393 citations

Journal ArticleDOI
TL;DR: This review critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting.

2,095 citations