scispace - formally typeset
Search or ask a question
Author

Kieron Messer

Bio: Kieron Messer is an academic researcher from University of Surrey. The author has contributed to research in topics: Facial recognition system & Feature (computer vision). The author has an hindex of 23, co-authored 61 publications receiving 3487 citations.


Papers
More filters
01 Jan 1999
TL;DR: This poster presents a poster presenting a probabilistic procedure for estimating the response of the immune system to laser-spot assisted surgery to treat central giant cell granuloma.
Abstract: Keywords: vision Reference EPFL-CONF-82502 URL: ftp://ftp.idiap.ch/pub/papers/vision/avbpa99.pdf Record created on 2006-03-10, modified on 2017-05-10

1,420 citations

Book ChapterDOI
TL;DR: A protocol for evaluating verification algorithms on the BANCA database, a new large, realistic and challenging multi-modal database intended for training and testing multi- modal verification systems, is described.
Abstract: In this paper we describe the acquisition and content of a new large, realistic and challenging multi-modal database intended for training and testing multi-modal verification systems. The BANCA database was captured in four European languages in two modalities (face and voice). For recording, both high and low quality microphones and cameras were used. The subjects were recorded in three different scenarios, controlled, degraded and adverse over a period of three months. In total 208 people were captured, half men and half women. In this paper we also describe a protocol for evaluating verification algorithms on the database. The database will be made available to the research community through http://www.ee.surrey.ac.uk/Research/VSSP/banca.

470 citations

Proceedings ArticleDOI
12 Dec 2007
TL;DR: An extensive and up-to-date survey of the existing techniques to address the illumination variation problem is presented and covers the passive techniques that attempt to solve the illumination problem by studying the visible light images in which face appearance has been altered by varying illumination.
Abstract: The illumination variation problem is one of the well-known problems in face recognition in uncontrolled environment. In this paper an extensive and up-to-date survey of the existing techniques to address this problem is presented. This survey covers the passive techniques that attempt to solve the illumination problem by studying the visible light images in which face appearance has been altered by varying illumination, as well as the active techniques that aim to obtain images of face modalities invariant to environmental illumination.

260 citations

Book ChapterDOI
27 Aug 2007
TL;DR: In this paper, a discriminative face representation derived by the Linear Discriminant Analysis (LDA) of multi-scale local binary pattern histograms is proposed for face recognition.
Abstract: A novel discriminative face representation derived by the Linear Discriminant Analysis (LDA) of multi-scale local binary pattern histograms is proposed for face recognition The face image is first partitioned into several non-overlapping regions In each region, multi-scale local binary uniform pattern histograms1 are extracted and concatenated into a regional feature The features are then projected on the LDA space to be used as a discriminative facial descriptor The method is implemented and tested in face identification on the standard Feret database and in face verification on the XM2VTS database with very promising results

222 citations

Proceedings ArticleDOI
17 May 2004
TL;DR: A comparison of five photometric normalisation algorithms for use in pre-processing face images for the purpose of verification, tested on various configurations of three contrasting databases.
Abstract: The variation of illumination conditions of an object can produce large changes in tthe image plane, significantl impairing the performance of face verification algorithms. We present a comparison of five photometric normalisation algorithms for use in pre-processing face images for the purpose of verification. The algorithms are tested on various configurations of three contrasting databases, namely the Yale B database, the XM2VTS database and the BANCA database.

106 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

01 Oct 2008
TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Abstract: Most face databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, background, camera quality, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database, Labeled Faces in the Wild, is provided as an aid in studying the latter, unconstrained, recognition problem. The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life. The database exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background. In addition to describing the details of the database, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible. We provide baseline results, including results of a state of the art face recognition system combined with a face alignment system. To facilitate experimentation on the database, we provide several parallel databases, including an aligned version.

5,742 citations

Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition, and improves robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources.
Abstract: Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources-Gabor wavelets and LBP-showing that the combination is considerably more accurate than either feature set alone. The resulting method provides state-of-the-art performance on three data sets that are widely used for testing recognition under difficult illumination conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recognition Grand Challenge version 2 experiment 4 (FRGC-204). For example, on the challenging FRGC-204 data set it halves the error rate relative to previously published methods, achieving a face verification rate of 88.1% at 0.1% false accept rate. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions.

2,981 citations

Proceedings Article
01 Jan 1989
TL;DR: A scheme is developed for classifying the types of motion perceived by a humanlike robot and equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented.
Abstract: A scheme is developed for classifying the types of motion perceived by a humanlike robot. It is assumed that the robot receives visual images of the scene using a perspective system model. Equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented. >

2,000 citations