scispace - formally typeset
Search or ask a question
Author

Kiichiro Tomoda

Bio: Kiichiro Tomoda is an academic researcher from Osaka Medical College. The author has contributed to research in topics: Induced pluripotent stem cell & Stem cell. The author has an hindex of 18, co-authored 30 publications receiving 21439 citations. Previous affiliations of Kiichiro Tomoda include University of California, San Francisco & Gladstone Institutes.

Papers
More filters
Journal ArticleDOI
30 Nov 2007-Cell
TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.

18,175 citations

Journal ArticleDOI
TL;DR: This work generated induced pluripotent stem cells capable of germline transmission from murine somatic cells by transd, and demonstrated the ability of these cells to reprogram into patient-specific and disease-specific stem cells.
Abstract: If it were possible to reprogram differentiated human somatic cells into a pluripotent state, patient-specific and disease-specific stem cells could be developed. Previous work generated induced pluripotent stem (iPS) cells capable of germline transmission from murine somatic cells by transd

4,034 citations

Journal ArticleDOI
11 Mar 1999-Nature
TL;DR: It is found that a mouse 38K protein (p38) encoded by the Jab1 gene interacts specifically with p27Kip1 and it is shown that overexpression of p38 in mammalian cells causes the translocation of p27kip1 from the nucleus to the cytoplasm, decreasing the amount of p 27Kip 1 in the cell by accelerating its degradation.
Abstract: The proliferation of mammalian cells is under strict control, and the cyclin-dependent-kinase inhibitory protein p27Kip1 is an essential participant in this regulation both in vitro and in vivo. Although mutations in p27Kip1 are rarely found in human tumours, reduced expression of the protein correlates well with poor survival among patients with breast or colorectal carcinomas, suggesting that disruption of the p27Kip1 regulatory mechanisms contributes to neoplasia. The abundance of p27Kip1 in the cell is determined either at or after translation, for example as a result of phosphorylation by cyclinE/Cdk2 complexes, degradation by the ubiquitin/proteasome pathway, sequestration by unknown Myc-inducible proteins, binding to cyclinD/Cdk4 complexes, or inactivation by the viral E1A oncoprotein. We have found that a mouse 38K protein (p38) encoded by the Jab1 gene interacts specifically with p27Kip1 and show here that overexpression of p38 in mammalian cells causes the translocation of p27Kip1 from the nucleus to the cytoplasm, decreasing the amount of p27Kip1 in the cell by accelerating its degradation. Ectopic expression of p38 in mouse fibroblasts partially overcomes p27Kip1-mediated arrest in the G1 phase of the cell cycle and markedly reduces their dependence on serum. Our findings indicate that p38 functions as a negative regulator of p27Kip1 by promoting its degradation.

637 citations

Journal ArticleDOI
TL;DR: Results indicate that cytoplasmic shuttling regulated by Jab1/CSN5 and other CSN components may be a new pathway to control the intracellular abundance of the key cell cycle regulator.

325 citations

Journal ArticleDOI
TL;DR: Jab1 controls cell cycle progression and cell survival by regulating multiple cell cycle signaling pathways via deneddylation of cullin subunit of the Skp1-Cullin-F box protein ubiquitin ligase complex.

160 citations


Cited by
More filters
Journal ArticleDOI
30 Nov 2007-Cell
TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.

18,175 citations

Journal ArticleDOI
TL;DR: It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease.
Abstract: Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, conside...

3,990 citations

Journal ArticleDOI
TL;DR: Noggin/SB431542-based neural induction should facilitate the use of hES and hiPS cells in regenerative medicine and disease modeling and obviate the need for protocols based on stromal feeders or embryoid bodies.
Abstract: Current neural induction protocols for human embryonic stem (hES) cells rely on embryoid body formation, stromal feeder co-culture or selective survival conditions. Each strategy has considerable drawbacks, such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient to induce rapid and complete neural conversion of >80% of hES cells under adherent culture conditions. Temporal fate analysis reveals the appearance of a transient FGF5(+) epiblast-like stage followed by PAX6(+) neural cells competent to form rosettes. Initial cell density determines the ratio of central nervous system and neural crest progeny. Directed differentiation of human induced pluripotent stem (hiPS) cells into midbrain dopamine and spinal motoneurons confirms the robustness and general applicability of the induction protocol. Noggin/SB431542-based neural induction should facilitate the use of hES and hiPS cells in regenerative medicine and disease modeling and obviate the need for protocols based on stromal feeders or embryoid bodies.

3,152 citations

Journal ArticleDOI
10 Jan 2008-Nature
TL;DR: The data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
Abstract: Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.

3,035 citations