scispace - formally typeset
Search or ask a question
Author

Kim Boekelheide

Bio: Kim Boekelheide is an academic researcher from Brown University. The author has contributed to research in topics: Sertoli cell & Germ cell. The author has an hindex of 56, co-authored 200 publications receiving 11531 citations. Previous affiliations of Kim Boekelheide include Duke University & Butler Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Implementation of a new toxicity testing paradigm firmly based on human biology by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters.
Abstract: With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology.

1,398 citations

Journal ArticleDOI
TL;DR: No evidence for failure of gene silencing is found in sir2α null animals, suggesting that either SIR2α has a different role in mammals than it does in Saccharomyces cerevisiae or that its role in genesilencing in confined to a small subset of mammalian genes.
Abstract: The yeast Sir2p protein has an essential role in maintaining telomeric and mating type genes in their transcriptionally inactive state. Mammalian cells have a very large proportion of their genome inactive and also contain seven genes that have regions of homology with the yeast sir2 gene. One of these mammalian genes, sir2alpha, is the presumptive mammalian homologue of the yeast sir2 gene. We set out to determine if sir2alpha plays a role in mammalian gene silencing by creating a strain of mice carrying a null allele of sir2alpha. Animals carrying two null alleles of sir2alpha were smaller than normal at birth, and most died during the early postnatal period. In an outbred background, the sir2alpha null animals often survived to adulthood, but both sexes were sterile. We found no evidence for failure of gene silencing in sir2alpha null animals, suggesting that either SIR2alpha has a different role in mammals than it does in Saccharomyces cerevisiae or that its role in gene silencing in confined to a small subset of mammalian genes. The phenotype of the sir2alpha null animals suggests that the SIR2alpha protein is essential for normal embryogenesis and for normal reproduction in both sexes.

561 citations

Journal ArticleDOI
TL;DR: This research presents a meta-analyses of the immune system’s response to exposure to radiation and shows clear patterns of decline in the immune systems of men and women aged 65 and over.
Abstract: Robert E. Chapin, Jane Adams, Kim Boekelheide, L. Earl Gray Jr, Simon W. Hayward, Peter S.J. Lees, Barry S. McIntyre, Kenneth M. Portier, Teresa M. Schnorr, Sherry G. Selevan, John G. Vandenbergh, and Susan R. Woskie Pfizer, Inc., Groton, CT University of Massachusetts, Boston, MA Brown University, Providence, RI U.S. Environmental Protection Agency, Research Triangle Park, NC Vanderbilt University Medical Center, Nashville, TN Johns Hopkins University, Baltimore, MD Schering Plough Research Institute, Summit, NJ American Cancer Society, Atlanta, GA National Institute for Occupational Safety and Health, Cincinnati, OH U.S. Public Health Service (Ret), Silver Spring, MD North Carolina State University, Raleigh, NC University of Massachusetts, Lowell, MA

489 citations

Journal ArticleDOI
TL;DR: In this model, FasL expressed by Sertoli cells initiates the apoptotic death of germ cells expressing Fas, which is proposed as a key regulator of spermatogenesis.
Abstract: Apoptosis occurs in the testis as an important physiological mechanism to limit the number of germ cells in the seminiferous epithelium. Sertoli cells, which tightly regulate germ cell proliferation and differentiation, are implicated in the control of germ cell apoptosis. Fas (APO-1, CD95), a transmembrane receptor protein, transmits an apoptotic signal within cells when bound by Fas ligand (FasL). The Fas system has been implicated in immune regulation, including cytotoxic T cell-mediated cytotoxicity, activation-induced suicide of T cells, and control of immune-privileged sites. Here we propose the Fas system as a key regulator of spermatogenesis. In this model, FasL expressed by Sertoli cells initiates the apoptotic death of germ cells expressing Fas. Using immunohistochemistry, we localized Fas to germ cells and FasL to Sertoli cells. The expression of these genes was dramatically up-regulated after exposure to mono-(2-ethylhexyl) phthalate and 2,5-hexanedione, two widely studied Sertoli cell toxicants known to induce germ cell apoptosis. Mouse germ cells in vitro were susceptible to anti-Fas antibody-induced death, and the survival of rat germ cells was increased after disruption of FasL by antisense oligonucleotide treatment. Unlike its expression in other tissues, testicular expression of Fas in the lpr mouse, a spontaneous mutant of the Fas gene, is similar to that in the normal mouse, arguing for the importance of the Fas system in maintaining testicular homeostasis. These data implicate the Sertoli cell in the paracrine control of germ cell output during spermatogenesis by a Fas-mediated pathway.

464 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proposed that DNA methylation age measures the cumulative effect of an epigenetic maintenance system, and can be used to address a host of questions in developmental biology, cancer and aging research.
Abstract: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.

4,233 citations

Journal ArticleDOI
TL;DR: A comprehensive and critical review of the in vivo data on resveratrol is provided, and its potential as a therapeutic for humans is considered.
Abstract: Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates that resveratrol has protective effects in rodent models of stress and disease. Here, we provide a comprehensive and critical review of the in vivo data on resveratrol, and consider its potential as a therapeutic for humans.

3,509 citations

Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations

Journal ArticleDOI
TL;DR: It is concluded that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses, and fundamental changes in chemical testing and safety determination are needed to protect human health.
Abstract: For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from...

2,475 citations

Journal ArticleDOI
01 Feb 2002-Science
TL;DR: Transgenic mice carrying the green fluorescent protein (GFP) gene driven by a ubiquitously expressing promoter are generated and transgenic rats that express GFP at high levels are generated, suggesting that this technique can be used to produce other transgenic animal species.
Abstract: Single-cell mouse embryos were infected in vitro with recombinant lentiviral vectors to generate transgenic mice carrying the green fluorescent protein (GFP) gene driven by a ubiquitously expressing promoter. Eighty percent of founder mice carried at least one copy of the transgene, and 90% of these expressed GFP at high levels. Progeny inherited the transgene(s) and displayed green fluorescence. Mice generated using lentiviral vectors with muscle-specific and T lymphocyte–specific promoters expressed high levels of GFP only in the appropriate cell types. We have also generated transgenic rats that express GFP at high levels, suggesting that this technique can be used to produce other transgenic animal species.

2,051 citations