scispace - formally typeset
Search or ask a question
Author

Kimitaka Itoh

Bio: Kimitaka Itoh is an academic researcher from Chubu University. The author has contributed to research in topics: Turbulence & Tokamak. The author has an hindex of 50, co-authored 599 publications receiving 12333 citations. Previous affiliations of Kimitaka Itoh include National Institutes of Natural Sciences, Japan & University of Provence.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: Experimental confirmation of the presence of zonal flows in magnetically confined toroidal plasma using an advanced diagnostic system--dual heavy ion beam probes is presented to illustrate one of the fundamental processes of structure formation in nature.
Abstract: This Letter presents experimental confirmation of the presence of zonal flows in magnetically confined toroidal plasma using an advanced diagnostic system--dual heavy ion beam probes. The simultaneous observation of an electric field at two distant toroidal locations (approximately 1.5 m apart) in the high temperature (approximately 1 keV) plasma provides a fluctuation spectrum of electric field (or flow), a spatiotemporal structure of the zonal flows (characteristic radial length of approximately 1.5 cm and lifetime of approximately 1.5 ms), their long-range correlation with toroidal symmetry (n=0), and the difference in the zonal flow amplitude with and without a transport barrier. These constitute essential elements of turbulence-zonal flow systems, and illustrate one of the fundamental processes of structure formation in nature.

328 citations

Journal ArticleDOI
TL;DR: A brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues can be found in Part A of this book as mentioned in this paper.
Abstract: This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C. Please note that version 3 on the archive is the auxiliary version of the Physics of the B Factories book. This uses the notation alpha, beta, gamma for the angles of the Unitarity Triangle. The nominal version uses the notation phi_1, phi_2 and phi_3. Please cite this work as Eur. Phys. J. C74 (2014) 3026.

282 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a study of empirical scaling of energy confinement observed experimentally in stellarator/heliotron devices (Heliotron E, Wendelstein VII-A, L2, Heliotron DR) for plasmas heated by electron cyclotron heating and neutral beam injection.
Abstract: The paper presents a study of empirical scaling of energy confinement observed experimentally in stellarator/heliotron devices (Heliotron E, Wendelstein VII-A, L2, Heliotron DR) for plasmas heated by electron cyclotron heating and/or neutral beam injection. The proposed scaling of the gross energy confinement time is: , where P is the absorbed power (MW), n is the line average electron density (1020 m−3), B is the magnetic field strength on the plasma axis (T), a is the average minor radius (m) and R is the major radius (m). The empirical scaling of the density limit obtainable under the optimum condition is proposed to be: . These scalings for helical systems are compared with those in tokamaks. The energy confinement scaling has a similar power dependence as the L-mode scaling of tokamaks. The density limit scaling for helical systems seems to indicate an upper limit of the achievable density similar to that in many tokamaks. From the energy confinement time and the density limit , a beta limit can be derived: , which can be lower than the stability/equilibrium beta limit. Thus, from the viewpoint of designing a machine, the values of B, a and R should be selected with care because the dependence of the confinement time (or nτET) and of the above beta limit on these values is different.

232 citations

Journal ArticleDOI
TL;DR: In this paper, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment.
Abstract: Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as "drift wave-zonal flow turbulence." In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. © 2006 American Institute of Physics.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report world averages of measurements of b-hadron, c-, c-, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011.
Abstract: This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

2,151 citations

Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: The current understanding of astrophysical magnetic fields is reviewed in this paper, focusing on their generation and maintenance by turbulence, where analytical and numerical results are discussed both for small scale dynamos, which are completely isotropic, and for large scale dynamo, where some form of parity breaking is crucial.

1,548 citations

Journal ArticleDOI
TL;DR: Recently, the LHCb Collaboration discovered two hidden-charm pentaquark states, which are also beyond the quark model as discussed by the authors, and investigated various theoretical interpretations of these candidates of the multiquark states.

1,083 citations