scispace - formally typeset
Search or ask a question
Author

Kin Fai Ho

Bio: Kin Fai Ho is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Medicine & Particulates. The author has an hindex of 69, co-authored 307 publications receiving 18845 citations. Previous affiliations of Kin Fai Ho include Hong Kong Polytechnic University & Scottish Environment Protection Agency.


Papers
More filters
Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: The results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from fossil fuel combustion and biomass burning is likely to be important for controlling China’s PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Abstract: Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

3,372 citations

Journal ArticleDOI
27 Apr 2020-Nature
TL;DR: It is proposed that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols, although the infectivity of the virus RNA was not established in this study.
Abstract: The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.

1,526 citations

Journal ArticleDOI
TL;DR: In this paper, simultaneous measurements of atmospheric organic and elemental carbon (OC and EC) were taken during winter and summer seasons at 2003 in 14 cities in China, and PM2.5 samples were analyzed for OC and EC by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance protocol.
Abstract: [1] Simultaneous measurements of atmospheric organic and elemental carbon (OC and EC) were taken during winter and summer seasons at 2003 in 14 cities in China. Daily PM2.5 samples were analyzed for OC and EC by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance protocol. Average PM2.5 OC concentrations in the 14 cities were 38.1 μg m−3 and 13.8 μg m−3 for winter and summer periods, and the corresponding EC were 9.9 μg m−3 and 3.6 μg m−3, respectively. OC and EC concentrations had summer minima and winter maxima in all the cities. Carbonaceous matter (CM), the sum of organic matter (OM = 1.6 × OC) and EC, contributed 44.2% to PM2.5 in winter and 38.8% in summer. OC was correlated with EC (R2: 0.56–0.99) in winter, but correlation coefficients were lower in summer (R2: 0.003–0.90). Using OC/EC enrichment factors, the primary OC, secondary OC and EC accounted for 47.5%, 31.7% and 20.8%, respectively, of total carbon in Chinese urban environments. More than two thirds of China's urban carbon is derived from directly emitted particles. Average OC/EC ratios ranged from 2.0 to 4.7 among 14 cities during winter and from 2.1 to 5.9 during summer. OC/EC ratios in this study were consistent with a possible cooling effect of carbonaceous aerosols over China.

992 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the organic carbon and elemental carbon (EC) in atmospheric particles at 8 sites in four cities (Hong Kong, Guangzhou, Shenzhen and Zhuhai) of Pearl River Delta Region (PRDR), China during two winter months (January and February, 2002).

582 citations

Journal ArticleDOI
TL;DR: In this paper, the concentrations of 16 selected polycyclic aromatic hydrocarbons (PAHs) in aerosols were quantified, and spatial and seasonal variations of PAHs were characterized.

555 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In the present study, 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples collected in a bus station and an outdoor site, showing low cancer risk incidence and incremental lifetime cancer risk (ILCR) calculated for both places.
Abstract: Polycyclic aromatic compounds (PACs) are known due to their mutagenic activity. Among them, 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA) are considered as two of the most potent mutagens found in atmospheric particles. In the present study 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples (PM 2.5) collected in a bus station and an outdoor site. The fuel used by buses was a diesel-biodiesel (96:4) blend and light-duty vehicles run with any ethanol-to-gasoline proportion. The concentrations of 2-NBA and 3-NBA were, on average, under 14.8 µg g−1 and 4.39 µg g−1, respectively. In order to access the main sources and formation routes of these compounds, we performed ternary correlations and multivariate statistical analyses. The main sources for the studied compounds in the bus station were diesel/biodiesel exhaust followed by floor resuspension. In the coastal site, vehicular emission, photochemical formation and wood combustion were the main sources for 2-NBA and 3-NBA as well as the other PACs. Incremental lifetime cancer risk (ILCR) were calculated for both places, which presented low values, showing low cancer risk incidence although the ILCR values for the bus station were around 2.5 times higher than the ILCR from the coastal site.

5,412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: The results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from fossil fuel combustion and biomass burning is likely to be important for controlling China’s PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Abstract: Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

3,372 citations

Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the current state of understanding of the air pollution problems in China's mega cities and identify the immediate challenges to understanding and controlling air pollution in these densely populated areas.

2,164 citations