scispace - formally typeset
Search or ask a question
Author

Kin Ho Lo

Bio: Kin Ho Lo is an academic researcher from University of Macau. The author has contributed to research in topics: Corrosion & Austenite. The author has an hindex of 20, co-authored 78 publications receiving 2774 citations. Previous affiliations of Kin Ho Lo include University of Manchester & Hong Kong Polytechnic University.


Papers
More filters
Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Book ChapterDOI
31 Jan 2012

155 citations

Journal ArticleDOI
TL;DR: In this article, a trimetallic nitride compound grown on nickel foam (CoVFeN) is demonstrated, which is an ultra-highly active OER electrocatalyst that outperforms the benchmark catalyst, RuO, and most of the state-of-the-art 3D transition metals and their compounds.
Abstract: The sluggish oxygen evolution reaction (OER) is a pivotal process for renewable energy technologies, such as water splitting. The discovery of efficient, durable, and earth-abundant electrocatalysts for water oxidation is highly desirable. Here, a novel trimetallic nitride compound grown on nickel foam (CoVFeN @ NF) is demonstrated, which is an ultra-highly active OER electrocatalyst that outperforms the benchmark catalyst, RuO, and most of the state-of-the-art 3D transition metals and their compounds. CoVFeN @ NF exhibits ultralow OER overpotentials of 212 and 264 mV at 10 and 100 mA cm in 1 m KOH, respectively, together with a small Tafel slop of 34.8 mV dec. Structural characterization reveals that the excellent catalytic activity mainly originates from: 1) formation of oxyhydroxide species on the surface of the catalyst due to surface reconstruction and phase transition, 2) promoted oxygen evolution possibly activated by peroxo-like (O) species through a combined lattice-oxygen-oxidation and adsorbate escape mechanism, 3) an optimized electronic structure and local coordination environment owing to the synergistic effect of the multimetal system, and 4) greatly accelerated electron transfer as a result of nitridation. This study provides a simple approach to rationally design cost-efficient and highly catalytic multimetal compound systems as OER catalysts for electrochemical energy devices.

152 citations

Journal ArticleDOI
TL;DR: In this article, the TIG process was applied on AISI 316 stainless steel by the tungsten inert gas (TIG) surfacing process, aiming at increasing cavitation erosion resistance.
Abstract: NiTi was deposited on AISI 316 stainless steel by the tungsten inert gas (TIG) surfacing process, aiming at increasing cavitation erosion resistance. A thick deposit, with a 750 HV microhardness and dilution ratio of 14% was formed, with strong deposit/substrate interfacial bonding. Small pores (size ≤20 μm, total volume fraction less than 1%), and some second phase precipitates were present in the deposit. Even with the presence of such pores, the cavitation erosion rate of the deposit in NaCl solution was lower than that of AISI 316 by a factor of more than nine, and even lower than that of AISI 316 laser-clad with NiCrSiB, a common hard-facing material. The large increase in erosion resistance could be attributed to the partial retention of superelasticity, and also to the high hardness of the deposit. In this preliminary study on the efficacy of the TIG process for NiTi deposition, the main problem identified was the presence of small pores in the deposit, the elimination of which, via more refined processing, would definitely further increase the cavitation erosion of the deposit.

97 citations


Cited by
More filters
Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Book
12 Mar 2014
TL;DR: In this paper, the effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1).
Abstract: In the laser treatment of a workpiece (9), e.g. for surface hardening, melting, alloying, cladding, welding or cutting, the adverse effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1). The two beams (1)(5) may be combined by a beam coupler (4) or may reach the workpiece (9) by separate optical paths (not shown). The shorter wavelength beam (1) improves the coupling efficiency of the higher- powered laser beam (5).

1,539 citations

Journal Article
TL;DR: In this paper, it was shown that the itinerant ferromagnetic order persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy.
Abstract: Materials research has driven the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices1,2 because identifying new magnetic materials is key to better device performance and design. Van der Waals crystals retain their chemical stability and structural integrity down to the monolayer and, being atomically thin, are readily tuned by various kinds of gate modulation3,4. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr2Ge2Te6 (ref. 5) and CrI3 (ref. 6) at low temperatures. Here we develop a device fabrication technique and isolate monolayers from the layered metallic magnet Fe3GeTe2 to study magnetotransport. We find that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, Tc, is suppressed relative to the bulk Tc of 205 kelvin in pristine Fe3GeTe2 thin flakes. An ionic gate, however, raises Tc to room temperature, much higher than the bulk Tc. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 opens up opportunities for potential voltage-controlled magnetoelectronics7-11 based on atomically thin van der Waals crystals.

1,017 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the kinetics of the substructure evolution and its correspondence to the strain hardening evolution of an Fe-22 wt.% Mn-0.6 wt% C TWIP steel during tensile deformation by means of electron channeling contrast imaging (ECCI) combined with electron backscatter diffraction (EBSD).

677 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the range of 3D printed polymer-based, metal-metal, and metal-ceramic applications while discussing advantages and challenges with additively manufactured multi-material structures.
Abstract: Additive manufacturing (AM) or 3D printing has revolutionized the manufacturing world through its rapid and geometrically-intricate capabilities as well as economic benefits. Countless businesses in automotive, aerospace, medical, and even food industries have adopted this approach over the past decade. Though this revolution has sparked widespread innovation with single material usage, the manufacturing world is constantly evolving. 3D printers now have the capability to create multi-material systems with performance improvements in user-definable locations. This means throughout a single component, properties like hardness, corrosion resistance, and environmental adaptation can be defined in areas that require it the most. These new processes allow for exciting multifunctional parts to be built that were never possible through traditional, single material AM processes. AM of metals, ceramics, and polymers is currently being evaluated to combine multiple materials in one operation and has already produced never-before-produced parts. While multi-material AM is still in its infancy, researchers are shifting their mindset toward this unique approach showing that the technology is beginning to advance past a research and development stage into real-world applications. This review is intended to highlight the range of 3D printed polymer-based, metal-metal, and metal-ceramic applications while discussing advantages and challenges with additively manufactured multi-material structures.

483 citations