scispace - formally typeset
Search or ask a question
Author

Kincho H. Law

Bio: Kincho H. Law is an academic researcher from Stanford University. The author has contributed to research in topics: Structural health monitoring & Finite element method. The author has an hindex of 44, co-authored 365 publications receiving 8816 citations. Previous affiliations of Kincho H. Law include University of Illinois at Urbana–Champaign & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a multi-agent based framework for simulating human and social behavior during emergency evacuation, which is able to demonstrate some emergent behaviors, such as competitive, queuing, and herding behaviors.
Abstract: Many computational tools for the simulation and design of emergency evacuation and egress are now available. However, due to the scarcity of human and social behavioral data, these computational tools rely on assumptions that have been found inconsistent or unrealistic. This paper presents a multi-agent based framework for simulating human and social behavior during emergency evacuation. A prototype system has been developed, which is able to demonstrate some emergent behaviors, such as competitive, queuing, and herding behaviors. For illustration, an example application of the system for safe egress design is provided.

478 citations

Journal ArticleDOI
TL;DR: In this paper, a time series algorithm is presented for damage identification and localization, where the vibration signals obtained from sensors are modeled as autoregressive moving average (ARMA) time series.

402 citations

Journal ArticleDOI
TL;DR: Farrar et al. as discussed by the authors expressed their sincere thanks to Dr Charles R. Farrar and Dr Scott W. Doebling of the Los Alamos National Laboratory for providing the experimental data of the Alamosa Canyon Bridge.
Abstract: The authors wish to express their sincere thanks to Dr Charles R. Farrar and Dr Scott W. Doebling of the Los Alamos National Laboratory for providing the experimental data of the Alamosa Canyon Bridge. This research was sponsored by the National Science Foundation under Grant No. CMS- 95261-2 and the National Aeronautics and Space Administration under Grant No. NAG2-1065.

337 citations

Journal ArticleDOI
TL;DR: In this paper, a wavelet-based signal processing technique has been developed to enhance the time reversibility of Lamb wave in thin composite plates, and the validity of the proposed method is demonstrated through experimental studies in which input signals exerted at piezoelectric (PZT) patches on a quasi-isotropic composite plate are successfully reconstructed by using the time reversal method.

306 citations

Journal ArticleDOI
TL;DR: A newly designed integrated wireless monitoring system that supports real-time data acquisition from multiple wireless sensing units that has been fabricated, assembled, and validated in both laboratory tests and in a large-scale field test conducted upon the Geumdang Bridge in Icheon, South Korea.
Abstract: Structural health monitoring (SHM) has become an important research problem which has the potential to monitor and ensure the performance and safety of civil structures. Traditional wire-based SHM systems require significant time and cost for cable installation. With the recent advances in wireless communication technology, wireless SHM systems have emerged as a promising alternative solution for rapid, accurate and low-cost structural monitoring. This paper presents a newly designed integrated wireless monitoring system that supports real-time data acquisition from multiple wireless sensing units. The selected wireless transceiver consumes relatively low power and supports long-distance peer-to-peer communication. In addition to hardware, embedded multithreaded software is also designed as an integral component of the proposed wireless monitoring system. A direct result of the multithreaded software paradigm is a wireless sensing unit capable of simultaneous data collection, data interrogation and wirele...

238 citations


Cited by
More filters
Book
01 Jan 1995
TL;DR: In this article, Nonaka and Takeuchi argue that Japanese firms are successful precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies, and they reveal how Japanese companies translate tacit to explicit knowledge.
Abstract: How has Japan become a major economic power, a world leader in the automotive and electronics industries? What is the secret of their success? The consensus has been that, though the Japanese are not particularly innovative, they are exceptionally skilful at imitation, at improving products that already exist. But now two leading Japanese business experts, Ikujiro Nonaka and Hiro Takeuchi, turn this conventional wisdom on its head: Japanese firms are successful, they contend, precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies. Examining case studies drawn from such firms as Honda, Canon, Matsushita, NEC, 3M, GE, and the U.S. Marines, this book reveals how Japanese companies translate tacit to explicit knowledge and use it to produce new processes, products, and services.

7,448 citations

01 Jan 2003

3,093 citations

01 Jan 2006

3,012 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

Journal ArticleDOI
TL;DR: In cases where animated graphics seem superior to static ones, scrutiny reveals lack of equivalence between animated and static graphics in content or procedures; the animated graphics convey more information or involve interactivity.
Abstract: Graphics have been used since ancient times to portray things that are inherently spatiovisual, like maps and building plans. More recently, graphics have been used to portray things that are metaphorically spatiovisual, like graphs and organizational charts. The assumption is that graphics can facilitate comprehension, learning, memory, communication and inference. Assumptions aside, research on static graphics has shown that only carefully designed and appropriate graphics prove to be beneficial for conveying complex systems. Effective graphics conform to the Congruence Principle according to which the content and format of the graphic should correspond to the content and format of the concepts to be conveyed. From this, it follows that animated graphics should be effective in portraying change over time. Yet the research on the efficacy of animated over static graphics is not encouraging. In cases where animated graphics seem superior to static ones, scrutiny reveals lack of equivalence between animated and static graphics in content or procedures; the animated graphics convey more information or involve interactivity. Animations of events may be ineffective because animations violate the second principle of good graphics, the Apprehension Principle, according to which graphics should be accurately perceived and appropriately conceived. Animations are often too complex or too fast to be accurately perceived. Moreover, many continuous events are conceived of as sequences of discrete steps. Judicious use of interactivity may overcome both these disadvantages. Animations may be more effective than comparable static graphics in situations other than conveying complex systems, for example, for real time reorientations in time and space.

1,647 citations