scispace - formally typeset
Search or ask a question
Author

King-Ning Tu

Other affiliations: Harvard University, University of Southern California, IBM  ...read more
Bio: King-Ning Tu is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Electromigration & Silicide. The author has an hindex of 92, co-authored 712 publications receiving 33259 citations. Previous affiliations of King-Ning Tu include Harvard University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the format of case study to review six reliability problems of Pb-free solders in electronic packaging technology and conducted analysis of these cases on the basis of thermodynamic driving force, time-dependent kinetic processes, and morphology and microstructure changes.
Abstract: Solder is widely used to connect chips to their packaging substrates in flip chip technology as well as in surface mount technology. At present, the electronic packaging industry is actively searching for Pb-free solders due to environmental concern of Pb-based solders. Concerning the reliability of Pb-free solders, some electronic companies are reluctant to adopt them into their high-end products. Hence, a review of the reliability behavior of Pb-free solders is timely. We use the format of “case study” to review six reliability problems of Pb-free solders in electronic packaging technology. We conducted analysis of these cases on the basis of thermodynamic driving force, time-dependent kinetic processes, and morphology and microstructure changes. We made a direct comparison to the similar problem in SnPb solder whenever it is available. Specifically, we reviewed: (1) interfacial reactions between Pb-free solder and thick metalliztion of bond-pad on the substrate-side, (2) interfacial reactions between Pb-free solder and thin-film under-bump metallization on the chip-side, (3) the growth of a layered intermetallic compound (IMC) by ripening in solid state aging of solder joints, (4) a long range interaction between chip-side and substrate-side metallizations across a solder joint, (5) electromigration in flip chip solder joints, and finally (6) Sn whisker growth on Pb-free finish on Cu leadframe. Perhaps, these cases may serve as helpful references to the understanding of other reliability behaviors of Pb-free solders.

1,315 citations

Journal ArticleDOI
King-Ning Tu1
TL;DR: In this paper, the authors reviewed what is current with respect to electromigration in Cu in terms of resistance, capacitance delay, electromigration resistance, and cost of production, and concluded that the most serious and persistent reliability problem in interconnect metallization is electromigration.
Abstract: Today, the price of building a factory to produce submicron size electronic devices on 300 mm Si wafers is over billions of dollars. In processing a 300 mm Si wafer, over half of the production cost comes from fabricating the very-large-scale-integration of the interconnect metallization. The most serious and persistent reliability problem in interconnect metallization is electromigration. In the past 40 years, the microelectronic industry has used Al as the on-chip conductor. Due to miniaturization, however, a better conductor is needed in terms of resistance–capacitance delay, electromigration resistance, and cost of production. The industry has turned to Cu as the on-chip conductor, so the question of electromigration in Cu metallization must be examined. On the basis of what we have learned from the use of Al in devices, we review here what is current with respect to electromigration in Cu. In addition, the system of interconnects on an advanced device includes flip chip solder joints, which now tend ...

885 citations

Journal ArticleDOI
TL;DR: In this paper, solutions for the differential equation governing the evolution of back stresses are presented for several representative cases, and the solutions are discussed in the light of experimental as well as theoretical developments from the literature.
Abstract: Electromigration is an important concern in very large scale integrated circuits. In narrow, confined metal interconnects used at the chip level, the electromigration flux is resisted by the evolution of mechanical stresses in the interconnects. Solutions for the differential equation governing the evolution of back stresses are presented for several representative cases, and the solutions are discussed in the light of experimental as well as theoretical developments from the literature.

661 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the reactions between SnPb and one of the four metals, Cu, Ni, Au, and Pd have been reviewed on the basis of the available data of morphology, thermodynamics, and kinetics.
Abstract: Solder reactions between SnPb and one of the four metals, Cu, Ni, Au, and Pd have been reviewed on the basis of the available data of morphology, thermodynamics, and kinetics. The reactions on both bulk and thin film forms of these metals have been considered and compared. Also the two kinds of reactions, above and below the melting point of the solder, have been considered and compared. The rate of intermetallic compound formation in wetting reactions between the molten solder and the metals is three to four orders of magnitude faster than those between the solid state solder and the metals. The rate is controlled by the morphology of intermetallic compound formation. In the wetting reaction between molten SnPb and Cu or Ni, the intermetallic compound formation has a scallop-type morphology, but in solid state aging, it has a layer-type morphology. There are channels between the scallops, which allow rapid diffusion and rapid rate of compound formation. In the layer-type morphology, the compound layer itself becomes a diffusion barrier to slow down the reaction. Similar morphological changes occur between SnPb and Au or Pd. The stability of scallop-type morphology in wetting reaction and layer-type morphology in solid state aging have been explained by minimization of surface and interfacial energies. The unusually high rate of scallop-type intermetallic compound formation has been explained by the gain of rate of free energy change rather than free energy change. Also included in the review is the use of a stack of thin films as under-bump-metallization, such as Cr/Cu/Au, Al/Ni(V)/Cu, and Cu/Ni alloyed thin films.

560 citations


Cited by
More filters
Book
J.P. Biersack, James F. Ziegler1
01 Aug 1985
TL;DR: A review of existing widely-cited tables of ion stopping and ranges can be found in this paper, where a brief exposition of what can be determined by modern calculations is given.
Abstract: The stopping and range of ions in matter is physically very complex, and there are few simple approximations which are accurate. However, if modern calculations are performed, the ion distributions can be calculated with good accuracy, typically better than 10%. This review will be in several sections: a) A brief exposition of what can be determined by modern calculations. b) A review of existing widely-cited tables of ion stopping and ranges. c) A review of the calculation of accurate ion stopping powers.

10,060 citations

Book
James F. Ziegler1, J.P. Biersack
09 Nov 2013
TL;DR: In this article, the authors reviewed the calculation of the stopping and the final range distribution of ions in matter, and showed the development of ion penetration theory by tracing how, as the theory developed through the years, various parts have been incorporated into tables and increased their accuracy.
Abstract: The purpose of this chapter is to review the calculation f the stopping and the final range distribution of ions in matter. During the last thirty years there have been published scores of tables and books evaluating the parameters of energetic ion penetration of matter. Rarely have the authors of these reference works included any evaluation of the accuracy of the tabulated numbers. We have chosen to show the development of ion penetration theory by tracing how, as the theory developed through the years, various parts have been incorporated into tables and increased their accuracy. This approach restricts our comments to those theoretical advances which have made significant contributions to the obtaining of practical ion stopping powers and range distributions. The Tables reviewed were chosen because of their extensive citation in the literature.

3,197 citations

Journal ArticleDOI
TL;DR: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology as discussed by the authors, and a comprehensive overview of synthetic strategies for hollow structures is presented.
Abstract: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-/nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed.

2,767 citations

Journal ArticleDOI
TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Abstract: Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance. Nanoscale metal/oxide/metal devices that are capable of fast non-volatile switching have been built from platinum and titanium dioxide. The devices could have applications in ultrahigh density memory cells and novel forms of computing.

2,744 citations

Journal ArticleDOI
TL;DR: The Raman spectrum of hexagonal diamond (lonsdaleite) is distinct from that of the cubic diamond and allows it to be recognized as discussed by the authors, and the Raman line width varies with mode of preparation of the diamond and has been related to degree of structural order.
Abstract: As the technology for diamond film preparation by plasma-assisted CVD and related procedures has advanced, Raman spectroscopy has emerged as one of the principal characterization tools for diamond materials. Cubic diamond has a single Raman-active first order phonon mode at the center of the Brillouin zone. The presence of sharp Raman lines allows cubic diamond to be recognized against a background of graphitic carbon and also to characterize the graphitic carbon. Small shifts in the band wavenumber have been related to the stress state of deposited films. The effect is most noticeable in diamond films deposited on hard substrates such as alumina or carbides. The Raman line width varies with mode of preparation of the diamond and has been related to degree of structural order. The Raman spectrum of hexagonal diamond (lonsdaleite) is distinct from that of the cubic diamond and allows it to be recognized.

2,300 citations