scispace - formally typeset
Search or ask a question
Author

Kingtse C. Mo

Bio: Kingtse C. Mo is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Sea surface temperature & North American Monsoon. The author has an hindex of 50, co-authored 97 publications receiving 34738 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.
Abstract: The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided b...

28,145 citations

Journal ArticleDOI
TL;DR: The second phase of the NLDAS-2 research partnership is presented in this article, where four land surface models (Noah, Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic) are executed over the conterminous U.S. (CONUS) in real-time and retrospective modes.
Abstract: [1] Results are presented from the second phase of the multiinstitution North American Land Data Assimilation System (NLDAS-2) research partnership. In NLDAS, the Noah, Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic land surface models (LSMs) are executed over the conterminous U.S. (CONUS) in realtime and retrospective modes. These runs support the drought analysis, monitoring and forecasting activities of the National Integrated Drought Information System, as well as efforts to monitor large-scale floods. NLDAS-2 builds upon the framework of the first phase of NLDAS (NLDAS-1) by increasing the accuracy and consistency of the surface forcing data, upgrading the land surface model code and parameters, and extending the study from a 3-year (1997–1999) to a 30-year (1979–2008) time window. As the first of two parts, this paper details the configuration of NLDAS-2, describes the upgrades to the forcing, parameters, and code of the four LSMs, and explores overall model-to-model comparisons of land surface water and energy flux and state variables over the CONUS. Focusing on model output rather than on observations, this study seeks to highlight the similarities and differences between models, and to assess changes in output from that seen in NLDAS-1. The second part of the two-part article focuses on the validation of model-simulated streamflow and evaporation against observations. The results depict a higher level of agreement among the four models over much of the CONUS than was found in the first phase of NLDAS. This is due, in part, to recent improvements in the parameters, code, and forcing of the NLDAS-2 LSMs that were initiated following NLDAS-1. However, large inter-model differences still exist in the northeast, Lake Superior, and western mountainous regions of the CONUS, which are associated with cold season processes. In addition, variations in the representation of sub-surface hydrology in the four LSMs lead to large differences in modeled evaporation and subsurface runoff. These issues are important targets for future research by the land surface modeling community. Finally, improvement from NLDAS-1 to NLDAS-2 is summarized by comparing the streamflow measured from U.S. Geological Survey stream gauges with that simulated by four NLDAS models over 961 small basins.

804 citations

Journal ArticleDOI
TL;DR: In this article, the authors used time series of outgoing longwave radiation (OLR) fields and various gridded reanalysis products to identify and describe periods with abundant and deficient rainfall over South America during summer.
Abstract: Time series of outgoing longwave radiation (OLR) fields and various gridded reanalysis products are used to identify and describe periods with abundant and deficient rainfall over South America during summer. Empirical orthogonal function analyses of OLR anomalies filtered to retain variations longer than 10 days reveal a meridional seesaw of dry and wet conditions over tropical and subtropical South America. It appears that intensification of the South Atlantic convergence zone (SACZ) is associated with rainfall deficits over the subtropical plains of South America. In contrast, when the SACZ weakens, precipitation over these plains is abundant. These results are in agreement with those of Kousky and Casarin. This seesaw pattern appears to be a regional component of a larger-scale system, possibly related to the 30–60-day oscillation in the Tropics, with the southward extension and strengthening of the SACZ found with enhanced tropical convection over the central and eastern Pacific and dry cond...

509 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO.
Abstract: The influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO. Intercomparisons between the assimilated datasets and comparisons with station observations of precipitation, winds, and specific humidity are used to evaluate the limitations of the assimilated products for studying the diurnal cycle of rainfall and the Great Plains LLJ. The winds from the reanalyses are used to diagnose the impact of the LLJ on observed nocturnal precipitation and moisture transport over a multisummer (JJA 1985–89) period. The impact of the LLJ on the overall moisture budget of the central United States is also examined. An inspection of the diurnal cycle of precipitation in gridded hourly station observations for 1963–93 reveals a well-defined nocturnal maximum over the Great Plains region during the spring and summer months consistent ...

402 citations

Journal ArticleDOI
TL;DR: For example, this article found that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in summertime precipitation over the central Great Plains during 2012, but such an extreme drought event was still a rare occurrence within the spread of 2012 climate model simulations.
Abstract: Central Great Plains precipitation deficits during May-August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in summertime precipitation over the central Great Plains during 2012. Yet, diagnosis of the retrospective climate simulations also reveals a regime shift toward warmer and drier summertime Great Plains conditions during the recent decade, most probably due to natural decadal variability. As a consequence, the probability for severe summer Great Plains drought may have increased in the last decade compared to the 1980s and 1990s, and the so-called tail-risk for severe drought may have been heightened in summer 2012. Such an extreme drought event was nonetheless still found to be a rare occurrence within the spread of 2012 climate model simulations. Implications of this study's findings for U.S. seasonal drought forecasting are discussed.

393 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.
Abstract: The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided b...

28,145 citations

Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
TL;DR: ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions as mentioned in this paper.
Abstract: ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions. The observing system changed considerably over this re-analysis period, with assimilable data provided by a succession of satellite-borne instruments from the 1970s onwards, supplemented by increasing numbers of observations from aircraft, ocean-buoys and other surface platforms, but with a declining number of radiosonde ascents since the late 1980s. The observations used in ERA-40 were accumulated from many sources. The first part of this paper describes the data acquisition and the principal changes in data type and coverage over the period. It also describes the data assimilation system used for ERA-40. This benefited from many of the changes introduced into operational forecasting since the mid-1990s, when the systems used for the 15-year ECMWF re-analysis (ERA-15) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis were implemented. Several of the improvements are discussed. General aspects of the production of the analyses are also summarized. A number of results indicative of the overall performance of the data assimilation system, and implicitly of the observing system, are presented and discussed. The comparison of background (short-range) forecasts and analyses with observations, the consistency of the global mass budget, the magnitude of differences between analysis and background fields and the accuracy of medium-range forecasts run from the ERA-40 analyses are illustrated. Several results demonstrate the marked improvement that was made to the observing system for the southern hemisphere in the 1970s, particularly towards the end of the decade. In contrast, the synoptic quality of the analysis for the northern hemisphere is sufficient to provide forecasts that remain skilful well into the medium range for all years. Two particular problems are also examined: excessive precipitation over tropical oceans and a too strong Brewer-Dobson circulation, both of which are pronounced in later years. Several other aspects of the quality of the re-analyses revealed by monitoring and validation studies are summarized. Expectations that the ‘second-generation’ ERA-40 re-analysis would provide products that are better than those from the firstgeneration ERA-15 and NCEP/NCAR re-analyses are found to have been met in most cases. © Royal Meteorological Society, 2005. The contributions of N. A. Rayner and R. W. Saunders are Crown copyright.

7,110 citations

Journal ArticleDOI
TL;DR: The NCEP-DOE Atmospheric Model Intercomparison Project (AMIP-II) reanalysis is a follow-on project to the "50-year" (1948-present) N CEP-NCAR Reanalysis Project.
Abstract: The NCEP–DOE Atmospheric Model Intercomparison Project (AMIP-II) reanalysis is a follow-on project to the “50-year” (1948–present) NCEP–NCAR Reanalysis Project. NCEP–DOE AMIP-II re-analysis covers the “20-year” satellite period of 1979 to the present and uses an updated forecast model, updated data assimilation system, improved diagnostic outputs, and fixes for the known processing problems of the NCEP–NCAR reanalysis. Only minor differences are found in the primary analysis variables such as free atmospheric geopotential height and winds in the Northern Hemisphere extratropics, while significant improvements upon NCEP–NCAR reanalysis are made in land surface parameters and land–ocean fluxes. This analysis can be used as a supplement to the NCEP–NCAR reanalysis especially where the original analysis has problems. The differences between the two analyses also provide a measure of uncertainty in current analyses.

5,177 citations

Journal ArticleDOI
TL;DR: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses as mentioned in this paper.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,572 citations