scispace - formally typeset
Search or ask a question
Author

Kinh Tieu

Bio: Kinh Tieu is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Image retrieval & Feature vector. The author has an hindex of 16, co-authored 31 publications receiving 2206 citations. Previous affiliations of Kinh Tieu include Mitsubishi Electric Research Laboratories & Yale University.

Papers
More filters
Proceedings ArticleDOI
15 Jun 2000
TL;DR: An approach for image retrieval using a very large number of highly selective features and efficient online learning based on the assumption that each image is generated by a sparse set of visual "causes" and that images which are visually similar share causes.
Abstract: We present an approach for image retrieval using a very large number of highly selective features and efficient online learning. Our approach is predicated on the assumption that each image is generated by a sparse set of visual "causes" and that images which are visually similar share causes. We propose a mechanism for computing a very large number of highly selective features which capture some aspects of this causal structure (in our implementation there are over 45,000 highly selective features). At query time a user selects a few example images, and a technique known as "boosting" is used to learn a classification function in this feature space. By construction, the boosting procedure learns a simple classifier which only relies on 20 of the features. As a result a very large database of images can be scanned rapidly, perhaps a million images per second. Finally we will describe a set of experiments performed using our retrieval system on a database of 3000 images.

504 citations

Journal ArticleDOI
TL;DR: This work proposes a mechanism for computing a very large number of highly selective features which capture some aspects of this causal structure and shows results on a wide variety of image queries.
Abstract: We present an approach for image retrieval using a very large number of highly selective features and efficient learning of queries. Our approach is predicated on the assumption that each image is generated by a sparse set of visual “causes” and that images which are visually similar share causes. We propose a mechanism for computing a very large number of highly selective features which capture some aspects of this causal structure (in our implementation there are over 46,000 highly selective features). At query time a user selects a few example images, and the AdaBoost algorithm is used to learn a classification function which depends on a small number of the most appropriate features. This yields a highly efficient classification function. In addition we show that the AdaBoost framework provides a natural mechanism for the incorporation of relevance feedback. Finally we show results on a wide variety of image queries.

419 citations

Book ChapterDOI
07 May 2006
TL;DR: An unsupervised learning framework to segment a scene into semantic regions and to build semantic scene models from long-term observations of moving objects in the scene is described and novel clustering algorithms which use both similarity and comparison confidence are introduced.
Abstract: In this paper, we describe an unsupervised learning framework to segment a scene into semantic regions and to build semantic scene models from long-term observations of moving objects in the scene. First, we introduce two novel similarity measures for comparing trajectories in far-field visual surveillance. The measures simultaneously compare the spatial distribution of trajectories and other attributes, such as velocity and object size, along the trajectories. They also provide a comparison confidence measure which indicates how well the measured image-based similarity approximates true physical similarity. We also introduce novel clustering algorithms which use both similarity and comparison confidence. Based on the proposed similarity measures and clustering methods, a framework to learn semantic scene models by trajectory analysis is developed. Trajectories are first clustered into vehicles and pedestrians, and then further grouped based on spatial and velocity distributions. Different trajectory clusters represent different activities. The geometric and statistical models of structures in the scene, such as roads, walk paths, sources and sinks, are automatically learned from the trajectory clusters. Abnormal activities are detected using the semantic scene models. The system is robust to low-level tracking errors.

318 citations

Proceedings ArticleDOI
06 Nov 2011
TL;DR: This paper proposes a 3D pose normalization method that is completely automatic and leverages the accurate 2D facial feature points found by the system and outperforms other comparable methods convincingly.
Abstract: An ideal approach to the problem of pose-invariant face recognition would handle continuous pose variations, would not be database specific, and would achieve high accuracy without any manual intervention. Most of the existing approaches fail to match one or more of these goals. In this paper, we present a fully automatic system for pose-invariant face recognition that not only meets these requirements but also outperforms other comparable methods. We propose a 3D pose normalization method that is completely automatic and leverages the accurate 2D facial feature points found by the system. The current system can handle 3D pose variation up to ±45° in yaw and ±30° in pitch angles. Recognition experiments were conducted on the USF 3D, Multi-PIE, CMU-PIE, FERET, and FacePix databases. Our system not only shows excellent generalization by achieving high accuracy on all 5 databases but also outperforms other methods convincingly.

243 citations

Proceedings ArticleDOI
17 Oct 2005
TL;DR: An approach for inferring the topology of a camera network by measuring statistical dependence between observations in different cameras is presented, accomplished by non-parametric estimates of statistical dependence and Bayesian integration of the unknown correspondence.
Abstract: We present an approach for inferring the topology of a camera network by measuring statistical dependence between observations in different cameras. Two cameras are considered connected if objects seen departing in one camera is seen arriving in the other. This is captured by the degree of statistical dependence between the cameras. The nature of dependence is characterized by the distribution of observation transformations between cameras, such as departure to arrival transition times, and color appearance. We show how to measure statistical dependence when the correspondence between observations in different cameras is unknown. This is accomplished by non-parametric estimates of statistical dependence and Bayesian integration of the unknown correspondence. Our approach generalizes previous work which assumed restricted parametric transition distributions and only implicitly dealt with unknown correspondence. Results are shown on simulated and real data. We also describe a technique for learning the absolute locations of the cameras with Global Positioning System (GPS) side information

161 citations


Cited by
More filters
Proceedings ArticleDOI
01 Dec 2001
TL;DR: A machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates and the introduction of a new image representation called the "integral image" which allows the features used by the detector to be computed very quickly.
Abstract: This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "integral image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers. The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.

18,620 citations

Journal ArticleDOI
TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Abstract: This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image” which allows the features used by our detector to be computed very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features. The third contribution is a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions. A set of experiments in the domain of face detection is presented. The system yields face detection performance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per second.

13,037 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: A new image representation called the “Integral Image” is introduced which allows the features used by the detector to be computed very quickly and a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.
Abstract: This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algo- rithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features. The third contribution is a method for combining classifiers in a "cascade" which allows back- ground regions of the image to be quickly discarded while spending more computation on promising face-like regions. A set of experiments in the domain of face detection is presented. The system yields face detection perfor- mance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per second.

10,592 citations

Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations