scispace - formally typeset
Search or ask a question
Author

Kirsten L. Johansen

Bio: Kirsten L. Johansen is an academic researcher from University of Minnesota. The author has contributed to research in topics: Dialysis & Kidney disease. The author has an hindex of 64, co-authored 280 publications receiving 16870 citations. Previous affiliations of Kirsten L. Johansen include Memorial Hospital of South Bend & University of Copenhagen.


Papers
More filters
Journal ArticleDOI
TL;DR: Intensive renal support in critically ill patients with acute kidney injury did not decrease mortality, improve recovery of kidney function, or reduce the rate of nonrenal organ failure as compared with less-intensive therapy.
Abstract: We randomly assigned critically ill patients with acute kidney injury and failure of at least one nonrenal organ or sepsis to receive intensive or less intensive renal-replacement therapy. The primary end point was death from any cause by day 60. In both study groups, hemodynamically stable patients underwent intermittent hemodialysis, and hemodynamically unstable patients underwent continuous venovenous hemodiafiltration or sustained low-efficiency dialysis. Patients receiving the intensive treatment strategy underwent intermittent hemodialysis and sustained low-efficiency dialysis six times per week and continuous venovenous hemodiafiltration at 35 ml per kilogram of body weight per hour; for patients receiving the less-intensive treatment strategy, the corresponding treatments were provided thrice weekly and at 20 ml per kilogram per hour. Results Baseline characteristics of the 1124 patients in the two groups were similar. The rate of death from any cause by day 60 was 53.6% with intensive therapy and 51.5% with less-intensive therapy (odds ratio, 1.09; 95% confidence interval, 0.86 to 1.40; P = 0.47). There was no significant difference between the two groups in the duration of renalreplacement therapy or the rate of recovery of kidney function or nonrenal organ failure. Hypotension during intermittent dialysis occurred in more patients randomly assigned to receive intensive therapy, although the frequency of hemodialysis sessions complicated by hypotension was similar in the two groups. Conclusions Intensive renal support in critically ill patients with acute kidney injury did not decrease mortality, improve recovery of kidney function, or reduce the rate of nonrenal organ failure as compared with less-intensive therapy involving a defined dose of intermittent hemodialysis three times per week and continuous renal-replacement therapy at 20 ml per kilogram per hour. (ClinicalTrials.gov number, NCT00076219.)

1,515 citations

Journal ArticleDOI
01 Mar 2000-JAMA
TL;DR: Initiatives to facilitate referral of patients to HVHs have the potential to reduce overall hospital mortality in California for the conditions identified and to determine the extent to which selective referral is feasible and to examine the potential consequences.
Abstract: ContextEvidence exists that high-volume hospitals (HVHs) have lower mortality rates than low-volume hospitals (LVHs) for certain conditions. However, few employers, health plans, or government programs have attempted to increase the number of patients referred to HVHs.ObjectivesTo determine the difference in hospital mortality between HVHs and LVHs for conditions for which good quality data exist and to estimate how many deaths potentially would be avoided in California by referral to HVHs.Design, Setting, and PatientsLiterature in MEDLINE, Current Contents, and FirstSearch Social Abstracts databases from January 1, 1983, to December 31, 1998, was searched using the key words hospital, outcome, mortality, volume, risk, and quality. The highest-quality study assessing the mortality-volume relationship for each given condition was identified and used to calculate odds ratios (ORs) for in-hospital mortality for LVHs vs HVHs. These ORs were then applied to the 1997 California database of hospital discharges maintained by the California Office of Statewide Health Planning and Development to estimate potentially avoidable deaths.Main Outcome MeasuresDeaths that potentially could be avoided if patients with conditions for which a mortality-volume relationship had been treated at an HVH vs LVH.ResultsThe articles identified in the literature search were grouped by condition, and predetermined criteria were applied to choose the best article for each condition. Mortality was significantly lower at HVHs for elective abdominal aortic aneurysm repair, carotid endarterectomy, lower extremity arterial bypass surgery, coronary artery bypass surgery, coronary angioplasty, heart transplantation, pediatric cardiac surgery, pancreatic cancer surgery, esophageal cancer surgery, cerebral aneurysm surgery, and treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). A total of 58,306 of 121,609 patients with these conditions were admitted to LVHs in California in 1997. After applying the calculated ORs to these patient populations, we estimated that 602 deaths (95% confidence interval, 304-830) at LVHs could be attributed to their low volume. Additional analyses were performed to take into account emergent admissions and distance traveled, but the impact of loss of continuity of care for some patients and reduction in the availability of specialists for patients remaining at LVHs could not be assessed.ConclusionsInitiatives to facilitate referral of patients to HVHs have the potential to reduce overall hospital mortality in California for the conditions identified. Additional study is needed to determine the extent to which selective referral is feasible and to examine the potential consequences of such initiatives.

781 citations

Journal ArticleDOI
TL;DR: The aim of the current study was to determine the prevalence and predictors of frailty among patients with end-stage renal disease and to establish the importance of prior frailty in clinical practice.
Abstract: The construct of frailty has been associated with adverse outcomes among elderly individuals, but the prevalence and significance of frailty among patients with end-stage renal disease have not been established. The aim of the current study was to determine the prevalence and predictors of frailty

557 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment ofAKI.
Abstract: tion’, implying that most patients ‘should’ receive a particular action. In contrast, level 2 guidelines are essentially ‘suggestions’ and are deemed to be ‘weak’ or discretionary, recognising that management decisions may vary in different clinical contexts. Each recommendation was further graded from A to D by the quality of evidence underpinning them, with grade A referring to a high quality of evidence whilst grade D recognised a ‘very low’ evidence base. The overall strength and quality of the supporting evidence is summarised in table 1 . The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment of AKI. The full summary of clinical practice statements is available at www.kdigo.org, but a few key recommendation statements will be highlighted here.

6,247 citations

Journal ArticleDOI
TL;DR: Mortality decreased as volume increased for all 14 types of procedures, but the relative importance of volume varied markedly according to the type of procedure.
Abstract: Background Although numerous studies suggest that there is an inverse relation between hospital volume of surgical procedures and surgical mortality, the relative importance of hospital volume in various surgical procedures is disputed. Methods Using information from the national Medicare claims data base and the Nationwide Inpatient Sample, we examined the mortality associated with six different types of cardiovascular procedures and eight types of major cancer resections between 1994 and 1999 (total number of procedures, 2.5 million). Regression techniques were used to describe relations between hospital volume (total number of procedures performed per year) and mortality (in-hospital or within 30 days), with adjustment for characteristics of the patients. Results Mortality decreased as volume increased for all 14 types of procedures, but the relative importance of volume varied markedly according to the type of procedure. Absolute differences in adjusted mortality rates between very-low-volume hospitals and very-high-volume hospitals ranged from over 12 percent (for pancreatic resection, 16.3 percent vs. 3.8 percent) to only 0.2 percent (for carotid endarterectomy, 1.7 percent vs. 1.5 percent). The absolute differences in adjusted mortality rates between very-low-volume hospitals and very-high-volume hospitals were greater than 5 percent for esophagectomy and pneumonectomy, 2 to 5 percent for gastrectomy, cystectomy, repair of a nonruptured abdominal aneurysm, and replacement of an aortic or mitral valve, and less than 2 percent for coronary-artery bypass grafting, lower-extremity bypass, colectomy, lobectomy, and nephrectomy. Conclusions In the absence of other information about the quality of surgery at the hospitals near them, Medicare patients undergoing selected cardiovascular or cancer procedures can significantly reduce their risk of operative death by selecting a high-volume hospital.

4,363 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: The findings suggest that the measurement method may have a significant impact on the observed levels of physical activity, which poses a problem for both reliance on self- report measures and for attempts to correct for self-report – direct measure differences.
Abstract: Accurate assessment is required to assess current and changing physical activity levels, and to evaluate the effectiveness of interventions designed to increase activity levels. This study systematically reviewed the literature to determine the extent of agreement between subjectively (self-report e.g. questionnaire, diary) and objectively (directly measured; e.g. accelerometry, doubly labeled water) assessed physical activity in adults. Eight electronic databases were searched to identify observational and experimental studies of adult populations. Searching identified 4,463 potential articles. Initial screening found that 293 examined the relationship between self-reported and directly measured physical activity and met the eligibility criteria. Data abstraction was completed for 187 articles, which described comparable data and/or comparisons, while 76 articles lacked comparable data or comparisons, and a further 30 did not meet the review's eligibility requirements. A risk of bias assessment was conducted for all articles from which data was abstracted. Correlations between self-report and direct measures were generally low-to-moderate and ranged from -0.71 to 0.96. No clear pattern emerged for the mean differences between self-report and direct measures of physical activity. Trends differed by measure of physical activity employed, level of physical activity measured, and the gender of participants. Results of the risk of bias assessment indicated that 38% of the studies had lower quality scores. The findings suggest that the measurement method may have a significant impact on the observed levels of physical activity. Self-report measures of physical activity were both higher and lower than directly measured levels of physical activity, which poses a problem for both reliance on self-report measures and for attempts to correct for self-report – direct measure differences. This review reveals the need for valid, accurate and reliable measures of physical activity in evaluating current and changing physical activity levels, physical activity interventions, and the relationships between physical activity and health outcomes.

2,469 citations