scispace - formally typeset
Search or ask a question
Author

Kisha Watkins

Bio: Kisha Watkins is an academic researcher from J. Craig Venter Institute. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 8, co-authored 9 publications receiving 4911 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans, was generated and Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactic pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
Abstract: The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for ≈80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.

2,092 citations

Journal ArticleDOI
01 May 2003-Nature
TL;DR: Several chromosomally encoded proteins that may contribute to pathogenicity—including haemolysins, phospholipases and iron acquisition functions—and numerous surface proteins that might be important targets for vaccines and drugs are found.
Abstract: Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.

813 citations

Journal ArticleDOI
TL;DR: Combining the genomic evidence with available culture traits, it is postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.
Abstract: The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N2 fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.

790 citations

Journal ArticleDOI
TL;DR: Various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens are identified.
Abstract: Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.

622 citations

Journal ArticleDOI
TL;DR: This study, which to the authors' knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola and S. muelleri, both isolated from H. coagulata.
Abstract: Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192–base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission.

429 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes.
Abstract: The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at http://www.tigr.org/software/mummer.

4,886 citations

Journal ArticleDOI
TL;DR: The new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies less on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence.
Abstract: Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

3,902 citations

Journal ArticleDOI
25 Jun 2010-PLOS ONE
TL;DR: A new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss is described, demonstrating high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental loss and loss.
Abstract: Background Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.

3,302 citations

Journal ArticleDOI
TL;DR: The individual steps of plant colonization are described and the known mechanisms responsible for rhizosphere and endophytic competence are surveyed to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.
Abstract: In both managed and natural ecosystems, beneficial plant-associated bacteria play a key role in supporting and/or increasing plant health and growth. Plant growth-promoting bacteria (PGPB) can be applied in agricultural production or for the phytoremediation of pollutants. However, because of their capacity to confer plant beneficial effects, efficient colonization of the plant environment is of utmost importance. The majority of plant-associated bacteria derives from the soil environment. They may migrate to the rhizosphere and subsequently the rhizoplane of their hosts before they are able to show beneficial effects. Some rhizoplane colonizing bacteria can also penetrate plant roots, and some strains may move to aerial plant parts, with a decreasing bacterial density in comparison to rhizosphere or root colonizing populations. A better understanding on colonization processes has been obtained mostly by microscopic visualisation as well as by analysing the characteristics of mutants carrying disfunctional genes potentially involved in colonization. In this review we describe the individual steps of plant colonization and survey the known mechanisms responsible for rhizosphere and endophytic competence. The understanding of colonization processes is important to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.

1,705 citations

Journal ArticleDOI
TL;DR: Insect heritable symbionts provide some of the extremes of cellular genomes, including the smallest and the fastest evolving, raising new questions about the limits of evolution of life.
Abstract: Insect heritable symbionts have proven to be ubiquitous, based on molecular screening of various insect lineages. Recently, molecular and experimental approaches have yielded an immensely richer understanding of their diverse biological roles, resulting in a burgeoning research literature. Increasingly, commonalities and intermediates are being discovered between categories of symbionts once considered distinct: obligate mutualists that provision nutrients, facultative mutualists that provide protection against enemies or stress, and symbionts such as Wolbachia that manipulate reproductive systems. Among the most farreaching impacts of widespread heritable symbiosis is that it may promote speciation by increasing reproductive and ecological isolation of host populations, and it effectively provides a means for transfer of genetic information among host lineages. In addition, insect symbionts provide some of the extremes of cellular genomes, including the smallest and the fastest evolving, raising new questions about the limits of evolution of life.

1,438 citations