scispace - formally typeset
Search or ask a question
Author

Kishore Bingi

Bio: Kishore Bingi is an academic researcher from VIT University. The author has contributed to research in topics: PID controller & Control theory. The author has an hindex of 8, co-authored 63 publications receiving 335 citations. Previous affiliations of Kishore Bingi include Universiti Teknologi Petronas & Petronas.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a simple curve fitting based integer-order approximation method for a fractional-order integrator/differentiator using frequency response that produces better parameter approximation for the desired frequency range compared with the Oustaloup, refined OUSTaloup and Matsuda techniques.
Abstract: Abstract Fractional-order PID (FOPID) controllers have been used extensively in many control applications to achieve robust control performance. To implement these controllers, curve fitting approximation techniques are widely employed to obtain integer-order approximation of FOPID. The most popular and widely used approximation techniques include the Oustaloup, Matsuda and Cheraff approaches. However, these methods are unable to achieve the best approximation due to the limitation in the desired frequency range. Thus, this paper proposes a simple curve fitting based integer-order approximation method for a fractional-order integrator/differentiator using frequency response. The advantage of this technique is that it is simple and can fit the entire desired frequency range. Simulation results in the frequency domain show that the proposed approach produces better parameter approximation for the desired frequency range compared with the Oustaloup, refined Oustaloup and Matsuda techniques. Furthermore, time domain and stability analyses also validate the frequency domain results.

28 citations

Journal ArticleDOI
21 Jul 2021-Sensors
TL;DR: In this paper, a detailed study focusing only on the adoption of WirelessHART in simulations and real-time applications for industrial process monitoring and control with its crucial challenges and design requirements is presented.
Abstract: Industrialization has led to a huge demand for a network control system to monitor and control multi-loop processes with high effectiveness. Due to these advancements, new industrial wireless sensor network (IWSN) standards such as ZigBee, WirelessHART, ISA 100.11a wireless, and Wireless network for Industrial Automation-Process Automation (WIA-PA) have begun to emerge based on their wired conventional structure with additional developments. This advancement improved flexibility, scalability, needed fewer cables, reduced the network installation and commissioning time, increased productivity, and reduced maintenance costs compared to wired networks. On the other hand, using IWSNs for process control comes with the critical challenge of handling stochastic network delays, packet drop, and external noises which are capable of degrading the controller performance. Thus, this paper presents a detailed study focusing only on the adoption of WirelessHART in simulations and real-time applications for industrial process monitoring and control with its crucial challenges and design requirements.

27 citations

Journal ArticleDOI
TL;DR: A fractional-order predictive PI controller has been proposed for dead-time processes with added filtering abilities and multiple real-time industrial process models are simulated with longdead-time to evaluate the proposed technique’s flexibility, set-point tracking, disturbance rejection, signal smoothing, and dead- time compensation capabilities.
Abstract: In most of the industrial process plants, PI/PID controllers have been widely used because of its simple design, easy tuning, and operational advantages. However, the performance of these controllers degrades for the processes with long dead-time and variation in set-point. Up next, a PPI controller is designed based on the Smith predictor to handle dead-time processes by compensation technique, but it failed to achieve adequate performance in the presence of external noise, large disturbances, and higher-order systems. Furthermore, the model-based controllers structure is complex in nature and requires the exact model of the process with more tunable parameters. Therefore, in this research, a fractional-order predictive PI controller has been proposed for dead-time processes with added filtering abilities. The controller uses the dead-time compensation characteristics of the Smith predictor and the fractional-order controller’s robustness nature. For the high peak overshoot, external noise, and disturbance problems, a new set-point and noise filtering technique is proposed, and later it is compared with different conventional methods. In servo and regulatory operations, the proposed controller and filtering techniques produced optimal performance. Multiple real-time industrial process models are simulated with long dead-time to evaluate the proposed technique’s flexibility, set-point tracking, disturbance rejection, signal smoothing, and dead-time compensation capabilities.

21 citations

Journal ArticleDOI
01 Jan 2022-Sensors
TL;DR: A novel hybrid arithmetic–trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems to improve the convergence rate and optimal search area in the exploration and exploitation phases is proposed.
Abstract: This paper proposes a novel hybrid arithmetic–trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms.

20 citations

Proceedings ArticleDOI
05 Mar 2021
TL;DR: In this paper, the authors developed a torque and stator temperature prediction model for permanent magnet synchronous motors using neural networks, which can predict torque and four other temperature parameters at the permanent magnet surface, stator's yoke, tooth, and winding.
Abstract: This paper focuses on developing a torque and stator temperature prediction model for permanent magnet synchronous motors using neural networks. The model can predict torque and four other temperature parameters at the permanent magnet surface, stator's yoke, tooth, and winding. The motor's torque and temperatures are predicted without installing any additional sensors into it. Using the training dataset with Levenberg-Marquardt optimization and Bayesian regularization algorithms, the predicted model has the best performance with the least mean square error and the best $R^{2}$ values. Also, the prediction of testing data shows that the estimated model follows closely with actual values. This is true for all the five output parameters.

19 citations


Cited by
More filters
Journal ArticleDOI
23 Nov 2018-Sensors
TL;DR: The principles of a number of energy harvesting technologies applicable to industrial machines are overviews by investigating the power consumption of WSNs and the potential energy sources in mechanical systems.
Abstract: Condition monitoring can reduce machine breakdown losses, increase productivity and operation safety, and therefore deliver significant benefits to many industries. The emergence of wireless sensor networks (WSNs) with smart processing ability play an ever-growing role in online condition monitoring of machines. WSNs are cost-effective networking systems for machine condition monitoring. It avoids cable usage and eases system deployment in industry, which leads to significant savings. Powering the nodes is one of the major challenges for a true WSN system, especially when positioned at inaccessible or dangerous locations and in harsh environments. Promising energy harvesting technologies have attracted the attention of engineers because they convert microwatt or milliwatt level power from the environment to implement maintenance-free machine condition monitoring systems with WSNs. The motivation of this review is to investigate the energy sources, stimulate the application of energy harvesting based WSNs, and evaluate the improvement of energy harvesting systems for mechanical condition monitoring. This paper overviews the principles of a number of energy harvesting technologies applicable to industrial machines by investigating the power consumption of WSNs and the potential energy sources in mechanical systems. Many models or prototypes with different features are reviewed, especially in the mechanical field. Energy harvesting technologies are evaluated for further development according to the comparison of their advantages and disadvantages. Finally, a discussion of the challenges and potential future research of energy harvesting systems powering WSNs for machine condition monitoring is made.

147 citations

Journal Article
TL;DR: Explicit formulas and graphs of few special functions are derived in this article on the basis of various definitions of various fractional derivatives and their applications are also reviewed in the paper, where the authors also review their applications.
Abstract: Explicit formula and graphs of few special functions are derived in the paper on the basis of various definitions of various fractional derivatives and various fractional integrals. Their applications are also reviewed in the paper.

140 citations

Journal ArticleDOI
TL;DR: This review provides a concise and comprehensive summary of the progress made in the development of VO-FC analytical and computational methods with application to the simulation of complex physical systems.
Abstract: Variable-order fractional operators were conceived and mathematically formalized only in recent years. The possibility of formulating evolutionary governing equations has led to the successful application of these operators to the modelling of complex real-world problems ranging from mechanics, to transport processes, to control theory, to biology. Variable-order fractional calculus (VO-FC) is a relatively less known branch of calculus that offers remarkable opportunities to simulate interdisciplinary processes. Recognizing this untapped potential, the scientific community has been intensively exploring applications of VO-FC to the modelling of engineering and physical systems. This review is intended to serve as a starting point for the reader interested in approaching this fascinating field. We provide a concise and comprehensive summary of the progress made in the development of VO-FC analytical and computational methods with application to the simulation of complex physical systems. More specifically, following a short introduction of the fundamental mathematical concepts, we present the topic of VO-FC from the point of view of practical applications in the context of scientific modelling.

127 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore existing networking communication technologies for the Internet of Things (IoT), with emphasis on encapsulation and routing protocols, and the relation between the IoT network protocols and the emerging IoT applications is also examined.
Abstract: Internet of Things (IoT) constitutes the next step in the field of technology, bringing enormous changes in industry, medicine, environmental care, and urban development. Various challenges are to be met in forming this vision, such as technology interoperability issues, security and data confidentiality requirements, and, last but not least, the development of energy efficient management systems. In this paper, we explore existing networking communication technologies for the IoT, with emphasis on encapsulation and routing protocols. The relation between the IoT network protocols and the emerging IoT applications is also examined. A thorough layer-based protocol taxonomy is provided, while how the network protocols fit and operate for addressing the recent IoT requirements and applications is also illustrated. What is the most special feature of this paper, compared to other survey and tutorial works, is the thorough presentation of the inner schemes and mechanisms of the network protocols subject to IPv6. Compatibility, interoperability, and configuration issues of the existing and the emerging protocols and schemes are discussed based on the recent advanced of IPv6. Moreover, open networking challenges such as security, scalability, mobility, and energy management are presented in relation to their corresponding features. Lastly, the trends of the networking mechanisms in the IoT domain are discussed in detail, highlighting future challenges.

127 citations