scispace - formally typeset
Search or ask a question
Author

Kishore Bingi

Bio: Kishore Bingi is an academic researcher from VIT University. The author has contributed to research in topics: PID controller & Control theory. The author has an hindex of 8, co-authored 63 publications receiving 335 citations. Previous affiliations of Kishore Bingi include Universiti Teknologi Petronas & Petronas.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
01 Sep 2017
TL;DR: Experimental results with temperature transmitter shows that the developed adapter is successfully interfaced and the temperature data is monitored continuously at a satisfactory delay.
Abstract: The advancement of wireless technology is becoming more apparent in industrial sectors with the advent of standards such as WirelessHART. The benefits associated with WirelessHART includes elimination of costly and cumbersome cabling, reduced maintenance cost and reduced deployment, redeployment in the network. However, the current WirelessHART is lack of low cost adapter for monitoring and control application in process industries. In this work, a low cost WirelessHART adapter is developed using a mote and microcontroller (Arduino Mega 2560) for process monitoring application. Experimental results with temperature transmitter shows that the developed adapter is successfully interfaced and the temperature data is monitored continuously at a satisfactory delay.

5 citations

Book ChapterDOI
01 Jan 2020
TL;DR: In this article, the authors proposed a model-based controller for dead-time compensators (DTCs) and internal model controllers (IMCs) to deal with high frequency noise and stochastic delay.
Abstract: Recently, increasing attention has been paid towards applying wireless technology for control. This is due to its advantages of flexibility, scalability, use of fewer cables and overall reduced operational cost compared to its wired counterpart. However, the technology is often affected by stochastic delay and high frequency noise. PIDs are ill-equipped to deal with these problems while model based controllers such as dead-time compensators (DTCs) like Smith predictor and internal model controllers (IMCs) are complex and require exact plant model for implementation.

5 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: The simulation study shows that the fractional-order oscillators can be effectively implemented and analyzed using Scilab, and is effective for various commensurate and non-commensurate orders.
Abstract: Over the years the chaotic behavior of fractional-order oscillators has been utilized in many real-world applications. In all the developments, the implementation and evaluation of these oscillators are done using MATLAB software. However, MATLAB is very expensive even for a limited number of licenses. Hence, a major alternative and open-source software i.e., Scilab can be used for these numerical computations. Therefore, in this paper, the fractional-order Van der Pol and Duffing oscillators are developed and analyzed using Scilab for various commensurate and non-commensurate orders. The simulation study shows that the fractional-order oscillators can be effectively implemented and analyzed using Scilab,

5 citations

Journal ArticleDOI
01 Jun 2022-Sensors
TL;DR: In this article , the authors developed an enhanced forecasting model to predict smart grid stability using neural networks to handle the missing data, and four case studies with missing input data were conducted, and then a model was prepared to predict the stability.
Abstract: A smart grid is a modern electricity system enabling a bidirectional flow of communication that works on the notion of demand response. The stability prediction of the smart grid becomes necessary to make it more reliable and improve the efficiency and consistency of the electrical supply. Due to sensor or system failures, missing input data can often occur. It is worth noting that there has been no work conducted to predict the missing input variables in the past. Thus, this paper aims to develop an enhanced forecasting model to predict smart grid stability using neural networks to handle the missing data. Four case studies with missing input data are conducted. The missing data is predicted for each case, and then a model is prepared to predict the stability. The Levenberg–Marquardt algorithm is used to train all the models and the transfer functions used are tansig and purelin in the hidden and output layers, respectively. The model’s performance is evaluated on a four-node star network and is measured in terms of the MSE and R2 values. The four stability prediction models demonstrate good performances and depict the best training and prediction ability.

4 citations


Cited by
More filters
Journal ArticleDOI
23 Nov 2018-Sensors
TL;DR: The principles of a number of energy harvesting technologies applicable to industrial machines are overviews by investigating the power consumption of WSNs and the potential energy sources in mechanical systems.
Abstract: Condition monitoring can reduce machine breakdown losses, increase productivity and operation safety, and therefore deliver significant benefits to many industries. The emergence of wireless sensor networks (WSNs) with smart processing ability play an ever-growing role in online condition monitoring of machines. WSNs are cost-effective networking systems for machine condition monitoring. It avoids cable usage and eases system deployment in industry, which leads to significant savings. Powering the nodes is one of the major challenges for a true WSN system, especially when positioned at inaccessible or dangerous locations and in harsh environments. Promising energy harvesting technologies have attracted the attention of engineers because they convert microwatt or milliwatt level power from the environment to implement maintenance-free machine condition monitoring systems with WSNs. The motivation of this review is to investigate the energy sources, stimulate the application of energy harvesting based WSNs, and evaluate the improvement of energy harvesting systems for mechanical condition monitoring. This paper overviews the principles of a number of energy harvesting technologies applicable to industrial machines by investigating the power consumption of WSNs and the potential energy sources in mechanical systems. Many models or prototypes with different features are reviewed, especially in the mechanical field. Energy harvesting technologies are evaluated for further development according to the comparison of their advantages and disadvantages. Finally, a discussion of the challenges and potential future research of energy harvesting systems powering WSNs for machine condition monitoring is made.

147 citations

Journal Article
TL;DR: Explicit formulas and graphs of few special functions are derived in this article on the basis of various definitions of various fractional derivatives and their applications are also reviewed in the paper, where the authors also review their applications.
Abstract: Explicit formula and graphs of few special functions are derived in the paper on the basis of various definitions of various fractional derivatives and various fractional integrals. Their applications are also reviewed in the paper.

140 citations

Journal ArticleDOI
TL;DR: This review provides a concise and comprehensive summary of the progress made in the development of VO-FC analytical and computational methods with application to the simulation of complex physical systems.
Abstract: Variable-order fractional operators were conceived and mathematically formalized only in recent years. The possibility of formulating evolutionary governing equations has led to the successful application of these operators to the modelling of complex real-world problems ranging from mechanics, to transport processes, to control theory, to biology. Variable-order fractional calculus (VO-FC) is a relatively less known branch of calculus that offers remarkable opportunities to simulate interdisciplinary processes. Recognizing this untapped potential, the scientific community has been intensively exploring applications of VO-FC to the modelling of engineering and physical systems. This review is intended to serve as a starting point for the reader interested in approaching this fascinating field. We provide a concise and comprehensive summary of the progress made in the development of VO-FC analytical and computational methods with application to the simulation of complex physical systems. More specifically, following a short introduction of the fundamental mathematical concepts, we present the topic of VO-FC from the point of view of practical applications in the context of scientific modelling.

127 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore existing networking communication technologies for the Internet of Things (IoT), with emphasis on encapsulation and routing protocols, and the relation between the IoT network protocols and the emerging IoT applications is also examined.
Abstract: Internet of Things (IoT) constitutes the next step in the field of technology, bringing enormous changes in industry, medicine, environmental care, and urban development. Various challenges are to be met in forming this vision, such as technology interoperability issues, security and data confidentiality requirements, and, last but not least, the development of energy efficient management systems. In this paper, we explore existing networking communication technologies for the IoT, with emphasis on encapsulation and routing protocols. The relation between the IoT network protocols and the emerging IoT applications is also examined. A thorough layer-based protocol taxonomy is provided, while how the network protocols fit and operate for addressing the recent IoT requirements and applications is also illustrated. What is the most special feature of this paper, compared to other survey and tutorial works, is the thorough presentation of the inner schemes and mechanisms of the network protocols subject to IPv6. Compatibility, interoperability, and configuration issues of the existing and the emerging protocols and schemes are discussed based on the recent advanced of IPv6. Moreover, open networking challenges such as security, scalability, mobility, and energy management are presented in relation to their corresponding features. Lastly, the trends of the networking mechanisms in the IoT domain are discussed in detail, highlighting future challenges.

127 citations