scispace - formally typeset
Search or ask a question
Author

Kisorthman Vimalakanthan

Bio: Kisorthman Vimalakanthan is an academic researcher from Energy Research Centre of the Netherlands. The author has contributed to research in topics: Vortex generator & Noise. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the feasibility of plasma actuation to control the hypersonic boundary layer transition is demonstrated and the research ideas are presented, and the direction of future research is prospected.
Abstract: Abstract Hypersonic boundary layer transition is a hot yet challenging problem restricting the development and breakthrough of hypersonic aerodynamics. In recent years, despite great progress made by wind tunnel experiment, transition mechanism and transition prediction, only partial knowledge has been gained so far. In this paper, firstly, the specific scenarios of hypersonic boundary layer transition control are clarified. Secondly, the experimental research progress and mechanism of passive control and active control methods under different hypersonic transition control demands are summarized, with their advantages and disadvantages being analyzed separately. Plasma actuation is easy to produce controllable broadband aerodynamic actuation, which has potential in the field of boundary layer transition control. Hence, the following part of the paper focuses on plasma flow control. The feasibility of plasma actuation to control the hypersonic boundary layer transition is demonstrated and the research ideas are presented. Finally, hypersonic boundary layer transition control methods are summarized and the direction of future research is prospected.

9 citations

Journal ArticleDOI
TL;DR: In this article , the feasibility of plasma actuation to control the hypersonic boundary layer transition is demonstrated and the research ideas are presented, and the direction of future research is prospected.
Abstract: Abstract Hypersonic boundary layer transition is a hot yet challenging problem restricting the development and breakthrough of hypersonic aerodynamics. In recent years, despite great progress made by wind tunnel experiment, transition mechanism and transition prediction, only partial knowledge has been gained so far. In this paper, firstly, the specific scenarios of hypersonic boundary layer transition control are clarified. Secondly, the experimental research progress and mechanism of passive control and active control methods under different hypersonic transition control demands are summarized, with their advantages and disadvantages being analyzed separately. Plasma actuation is easy to produce controllable broadband aerodynamic actuation, which has potential in the field of boundary layer transition control. Hence, the following part of the paper focuses on plasma flow control. The feasibility of plasma actuation to control the hypersonic boundary layer transition is demonstrated and the research ideas are presented. Finally, hypersonic boundary layer transition control methods are summarized and the direction of future research is prospected.

9 citations

Journal ArticleDOI
TL;DR: In this article , the aerodynamic effects of mini Gurney flaps (MGFs) and their combination with vortex generators (VGs) on the performance of airfoils and wind turbine rotor blades are investigated.
Abstract: Abstract. This wind tunnel study investigates the aerodynamic effects of mini Gurney flaps (MGFs) and their combination with vortex generators (VGs) on the performance of airfoils and wind turbine rotor blades. VGs are installed on the suction side aiming at stall delay and increased maximum lift. MGFs are thin angle profiles that are attached at the trailing edge in order to increase lift at pre-stall operation. The implementation of both these passive flow control devices is accompanied by a certain drag penalty. The wind tunnel tests are conducted at the Hermann-Föttinger Institut of the Technische Universität Berlin based on two airfoils that are characteristic of different sections of large rotor blades. Lift and drag are determined using a force balance and a wake rake, respectively, for static angles of attack between −5 and 17∘ at a Reynolds number of 1.5 million. The impact of different MGF heights including 0.25 %, 0.5 % and 1.0 % and a VG height of 1.1 % of the chord length is tested and evaluated. Furthermore, the clean and the tripped baseline cases are considered. In the latter, leading-edge transition is forced with Zig Zag (ZZ) turbulator tape. The preferred configurations are the smallest MGF on the NACA63(3)618 and the medium-sized MGF combined with VGs on the DU97W300. Next, the experimental lift and drag polar data are imported into the software QBlade in order to design a generic rotor blade. The blade performance is simulated with and without the add-ons by means of two case studies. In the first case, the retrofit application on an existing blade mitigates the adverse effects of the ZZ tape. Stall is delayed and the aerodynamic efficiency is partly recovered leading to an improvement of the power curve. In the second case, the new design application allows for the design of a more slender blade while maintaining the rotor power. This alternative blade appears to be more resistant against the adverse effects of forced leading-edge transition.

3 citations

Journal ArticleDOI
TL;DR: In this article, the performance and effects generated by a rotating microtab (MT) implemented on the trailing edge of a DU91W250 airfoil through the novel cell-set (CS) model for the first time via CFD techniques.
Abstract: Flow control device modeling is an engaging research field for wind turbine optimization, since in recent years wind turbines have grown in proportions and weight. The purpose of the present work was to study the performance and effects generated by a rotating microtab (MT) implemented on the trailing edge of a DU91W250 airfoil through the novel cell-set (CS) model for the first time via CFD techniques. The CS method is based on the reutilization of an already calculated mesh for the addition of new geometries on it. To accomplish that objective, the required region is split from the main domain, and new boundaries are assigned to the mentioned construction. Three different MT lengths were considered: h = 1%, 1.5% and 2% of the airfoil chord length, as well as seven MT orientations (β): from 0° to −90° regarding the horizontal axis, for five angles of attack: 0°, 2°, 4°, 6° and 9°. The numerical results showed that the increases of the β rotating angle and the MT length (h) led to higher aerodynamic performance of the airfoil, CL/CD = 164.10 being the maximum ratio obtained. All the performance curves showed an asymptotic trend as the β angle reduced. Qualitatively, the model behaved as expected, proving the relationship between velocity and pressure. Taking into consideration resulting data, the cell-set method is appropriate for computational testing of trailing edge rotating microtab geometry.

3 citations