scispace - formally typeset
Search or ask a question
Author

Kiyoshi Yase

Bio: Kiyoshi Yase is an academic researcher from National Institute of Advanced Industrial Science and Technology. The author has contributed to research in topics: Thin film & Crystal growth. The author has an hindex of 43, co-authored 220 publications receiving 5852 citations. Previous affiliations of Kiyoshi Yase include KAIST & Tokyo Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a field effect transistor (FET) based on poly(3-n-hexylthiophene) was investigated to determine the influence of moisture on device characteristics and gain a deep understanding of the mechanism underlying the susceptibility to air of the operation of FETs of this kind.
Abstract: We investigated a field-effect transistor (FET) based on a poly(3-n-hexylthiophene) (P3HT) to determine the influence of moisture on device characteristics and thus gain a deep understanding of the mechanism underlying the susceptibility to air of the operation of FETs of this kind. The fundamental output characteristics, which include effective field-effect modulation and saturation behavior in the output current, remained almost the same for every current–voltage profile in a vacuum, N2 and O2. By contrast, operation in N2 humidified with water resulted in enlarged off-state conduction and deterioration in the saturation behavior, in the same manner as that experienced with exposure to room air. We concluded that atmospheric water had a greater effect on the susceptibility of the device operation to air than O2, whose p-type doping activity as regards P3HT caused only a small increase in the conductivity of the active layer and a slight decrease in the field-effect mobility with exposure at ambient pres...

237 citations

Journal ArticleDOI
TL;DR: Singlet and triplet-triplet energy transfer in phosphorescent dye doped polymer light emitting devices were investigated in this article, where the host poly(N-vinylcarbazol) and poly[9,9′-di-n-hexyl-2,7-fluorene-alt- 1,4-(2,5-di)-nhexyloxy)phenylene] (PFHP) were selected as the host polymer for the phosphorescent dopants fac-tris(2-phenylpyridine) iridium(III) [
Abstract: Singlet and triplet–triplet energy transfer in phosphorescent dye doped polymer light emitting devices were investigated. Poly(N-vinylcarbazol) and poly[9,9′-di-n-hexyl-2,7-fluorene-alt- 1,4-(2,5-di-n-hexyloxy)phenylene] (PFHP) were selected as the host polymer for the phosphorescent dopants fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] and 2,3,7,8,12,13, 17,18-octaethyl-21H,23H-porphyrin platinum(II) (PtOEP) because of their high triplet energy levels and long phosphorescence lifetimes. In case of PVK film, efficient triplet energy transfers to both PtOEP and Ir(ppy)3 were observed. In contrast, the triplet energy transfer did not occur or was very weak from PFHP to both PtOEP and Ir(ppy)3 although usual requirements for triplet energy transfer were satisfied. Furthermore, the singlet–singlet energy transfer did not take place from PFHP to Ir(ppy)3 in doped films even though the Forster radius is more than 30 A. However, the blended film of Ir(ppy)3 with PFHP and PMMA showed the green emission from ...

219 citations

Journal ArticleDOI
31 Jul 1998-Langmuir
TL;DR: A new family of oligopeptide-based bolaamphiphiles with a dicarboxylic headgroup at each end has been synthesized in this paper, which can be linked via amide bond to a long-chain α,ω-dicar boxylic acid as a hydrocarbon spacer.
Abstract: A new family of oligopeptide-based bolaamphiphiles, glycylglycine- (1a−h), glycylglycylglycine- (2a−b), sarcosylsarcosine- (3), l-prolyl-l-proline- (4), glycylsarcosylsarcosine- (5), and glycyl-l-prolyl-l-proline (6)-based bolaamphiphiles with a dicarboxylic headgroup at each end, has been synthesized. The oligopeptide fragments were linked via amide bond to a long-chain α,ω-dicarboxylic acid as a hydrocarbon spacer. Self-assembling properties of these bolaamphiphiles in water have been studied by light and cryogenic temperature transmission electron microscopy, infrared spectroscopy, and pH titration. Only sodium or potassium salts (acid soap) of the bolaamphiphiles 1a, 1c, 1e, 2a, and 2b produced well-defined microtubes of 1−3-μm diameter with closed ends. All the tubes encapsulated a number of vesicular assemblies inside the aqueous compartment. The tube formation strongly depends on the connecting alkylene chain length, the alkylene even−odd carbon numbers, and constituent amino acid residues. Vectori...

207 citations

Journal ArticleDOI
TL;DR: In this paper, a high performance OFET with pentacene and copper phthalocyanine (CuPC) was fabricated from organic phototransistors (OPTs) based on the geometry of organic field effect transistors (OFETs); and the effect of the wavelength of the incident light source on their performance was examined.
Abstract: Organic phototransistors (OPTs) were fabricated from pentacene and copper phthalocyanine (CuPC) based on the geometry of organic field-effect transistors (OFETs); and the effect of the wavelength of the incident light source on their performance was examined High performance OFETs with pentacene and CuPC were fabricated and the characteristics of the OPTs were examined under UV and visible-light irradiations with top illumination The CuPC and pentacene OPTs show a high responsivities of 05–2 and 10–50A∕W and maximum IPh∕IDark of 3000 and 13×105, respectively, under 365nm UV light However, under visible light, at a wavelength of 650nm, the pentacene OPTs had 100 times less responsivity, 015–045A∕W, and a IPh∕IDark of 1000, even though an absorption coefficient three times larger was observed at this wavelength than at 365nm A strong correlation was found between the performance of the OPTs and the incident photon to current conversion efficiency spectra of an organic semiconductor The strong depen

194 citations


Cited by
More filters
PatentDOI
14 Nov 2002-Science
TL;DR: In this paper, pH-induced self-assembly of a peptide-amphiphile was used to make a nanostructured fibrous scaffold reminiscent of extracellular matrix.
Abstract: We have used the pH-induced self-assembly of a peptide-amphiphile to make a nanostructured fibrous scaffold reminiscent of extracellular matrix. The design of this peptide-amphiphile allows the nanofibers to be reversibly cross-linked to enhance or decrease their structural integrity. After cross-linking, the fibers are able to direct mineralization of hydroxyapatite to form a composite material in which the crystallographic c axes of hydroxyapatite are aligned with the long axes of the fibers. This alignment is the same as that observed between collagen fibrils and hydroxyapatite crystals in bone.

3,125 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations