scispace - formally typeset
Search or ask a question
Author

Kizheppatt Vipin

Bio: Kizheppatt Vipin is an academic researcher from Nazarbayev University. The author has contributed to research in topics: Control reconfiguration & Field-programmable gate array. The author has an hindex of 14, co-authored 30 publications receiving 741 citations. Previous affiliations of Kizheppatt Vipin include École Normale Supérieure & Birla Institute of Technology and Science.

Papers
More filters
Proceedings ArticleDOI
30 Nov 2015
TL;DR: A framework that integrates reconfigurable accelerators in a standard server with virtualised resource management and communication is discussed and a case study is presented that quantifies the efficiency benefits and break-even point for integrating FPGAs in the cloud.
Abstract: Hardware accelerators implement custom architectures to significantly speed up computations in a wide range of domains. As performance scaling in server-class CPUs slows, we propose the integration of hardware accelerators in the cloud as a way to maintain a positive performance trend. Field programmable gate arrays (FPGAs) represent the ideal way to integrate accelerators in the cloud, since they can be reprogrammed as needs change and allow multiple accelerators to share optimised communication infrastructure. We discuss a framework that integrates reconfigurable accelerators in a standard server with virtualised resource management and communication. We then present a case study that quantifies the efficiency benefits and break-even point for integrating FPGAs in the cloud.

156 citations

Journal ArticleDOI
TL;DR: This work reviews FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures, and investigates design flows and identifies the key challenges in making reconfigurable FPGAs systems easier to design.
Abstract: Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption.

122 citations

Journal ArticleDOI
TL;DR: ZyCAP combines high-throughput configuration with a high-level software interface that frees the processor from detailed PR management, making PR on the Zynq easy and efficient.
Abstract: New hybrid FPGA platforms that couple processors with a reconfigurable fabric, such as the Xilinx Zynq, offer an alternative view of reconfigurable computing where software applications leverage hardware resources through the use of often reconfigured accelerators. For this to be feasible, reconfiguration overheads must be reduced so that the processor is not burdened with managing the process. We discuss partial reconfiguration (PR) on these architectures, and present an open source controller, ZyCAP, that overcomes the limitations of existing methods, offering more effective use of hardware resources in such architectures. ZyCAP combines high-throughput configuration with a high-level software interface that frees the processor from detailed PR management, making PR on the Zynq easy and efficient.

114 citations

Journal ArticleDOI
TL;DR: A methodology and a runtime system that together simplify the FPGA application development process by providing a clean abstraction with high-level APIs for easy application development and a simple execution model that supports both hardware and software execution are proposed.
Abstract: FPGAs offer high performance coupled with energy efficiency, making them extremely attractive computational resources within a cloud ecosystem. However, to achieve this integration and make them easy to program, we first need to enable users with varying expertise to easily develop cloud applications that leverage FPGAs. With the growing size of FPGAs, allocating them monolithically to users can be wasteful due to potentially low device utilization. Hence, we also need to be able to dynamically share FPGAs among multiple users. To address these concerns, we propose a methodology and a runtime system that together simplify the FPGA application development process by providing: 1) a clean abstraction with high-level APIs for easy application development; 2) a simple execution model that supports both hardware and software execution; and 3) a shared memory-model which is convenient to use for the programmers. Akin to an operating system on a computer, our lightweight runtime system enables the simultaneous execution of multiple applications by virtualizing computational resources, i.e., FPGA resources and on-board memory, and offers protection facilities to isolate applications from each other. In this paper, we illustrate how these features can be developed in a lightweight manner and quantitatively evaluate the performance overhead they introduce on a small set of applications running on our proof of concept prototype. Our results demonstrate that these features only introduce marginal performance overheads. More importantly, by sharing resources for simultaneous execution of multiple user applications, our platform improves FPGA utilization and delivers higher aggregate throughput compared to accessing the device in a time-shared manner.

64 citations

Proceedings ArticleDOI
01 Dec 2012
TL;DR: This paper presents a high-speed configuration controller that provides several features useful in adaptive systems and has been released for use by the wider research community.
Abstract: Partial Reconfiguration (PR) is an advanced technique, which improves the flexibility of FPGAs by allowing portions of a design to be reconfigured at runtime by overwriting parts of the configuration memory. PR is an important enabler for implementing adaptive systems. However, the design of such systems can be challenging, and this is especially true of the configuration controller. The generally supported methods and IP have low throughput, resulting in long configuration time that precludes PR from systems where this operation needs to be fast. In this paper, we present a high-speed configuration controller that provides several features useful in adaptive systems. The design has been released for use by the wider research community.

59 citations


Cited by
More filters
Proceedings ArticleDOI
15 Oct 2016
TL;DR: A new cloud architecture that uses reconfigurable logic to accelerate both network plane functions and applications, and is much more scalable than prior work which used secondary rack-scale networks for inter-FPGA communication.
Abstract: Hyperscale datacenter providers have struggled to balance the growing need for specialized hardware (efficiency) with the economic benefits of homogeneity (manageability) In this paper we propose a new cloud architecture that uses reconfigurable logic to accelerate both network plane functions and applications This Configurable Cloud architecture places a layer of reconfigurable logic (FPGAs) between the network switches and the servers, enabling network flows to be programmably transformed at line rate, enabling acceleration of local applications running on the server, and enabling the FPGAs to communicate directly, at datacenter scale, to harvest remote FPGAs unused by their local servers We deployed this design over a production server bed, and show how it can be used for both service acceleration (Web search ranking) and network acceleration (encryption of data in transit at high-speeds) This architecture is much more scalable than prior work which used secondary rack-scale networks for inter-FPGA communication By coupling to the network plane, direct FPGA-to-FPGA messages can be achieved at comparable latency to previous work, without the secondary network Additionally, the scale of direct inter-FPGA messaging is much larger The average round-trip latencies observed in our measurements among 24, 1000, and 250,000 machines are under 3, 9, and 20 microseconds, respectively The Configurable Cloud architecture has been deployed at hyperscale in Microsoft's production datacenters worldwide

512 citations

Proceedings ArticleDOI
20 May 2018
TL;DR: This work introduces and demonstrates remote power side-channel attacks using an FPGA, showing that the common assumption that powerSideChannel attacks require specialized equipment and physical access to the victim hardware is not true for systems with an integrated FPGAs.
Abstract: The rapid adoption of heterogeneous computing has driven the integration of Field Programmable Gate Arrays (FPGAs) into cloud datacenters and flexible System-on-Chips (SoCs). This paper shows that the integrated FPGA introduces a new security vulnerability by enabling software-based power side-channel attacks without physical proximity to a target system. We first demonstrate that an on-chip power monitor can be built on a modern FPGA using ring oscillators (ROs), and characterize its ability to observe the power consumption of other modules on the FPGA or the SoC. Then, we show that the RO-based FPGA power monitor can be used for a successful power analysis attack on an RSA cryptomodule on the same FPGA. Additionally, we show that the FPGA-based power monitor can observe the power consumption of a CPU on the same SoC, and demonstrate that the FPGA-to-CPU power side-channel attack can break timing-channel protection for a RSA program running on a CPU. This work introduces and demonstrates remote power side-channel attacks using an FPGA, showing that the common assumption that power side-channel attacks require specialized equipment and physical access to the victim hardware is not true for systems with an integrated FPGA.

223 citations

Proceedings ArticleDOI
30 Nov 2015
TL;DR: A framework that integrates reconfigurable accelerators in a standard server with virtualised resource management and communication is discussed and a case study is presented that quantifies the efficiency benefits and break-even point for integrating FPGAs in the cloud.
Abstract: Hardware accelerators implement custom architectures to significantly speed up computations in a wide range of domains. As performance scaling in server-class CPUs slows, we propose the integration of hardware accelerators in the cloud as a way to maintain a positive performance trend. Field programmable gate arrays (FPGAs) represent the ideal way to integrate accelerators in the cloud, since they can be reprogrammed as needs change and allow multiple accelerators to share optimised communication infrastructure. We discuss a framework that integrates reconfigurable accelerators in a standard server with virtualised resource management and communication. We then present a case study that quantifies the efficiency benefits and break-even point for integrating FPGAs in the cloud.

156 citations

Proceedings Article
01 Jan 1996
TL;DR: In this paper, the authors examine several usage patterns for DPGAs including temporal pipelining, utility functions, multiple function accommodation, and state-dependent logic, and offer insight into the application and technology space where DPGA-style reuse techniques are most beneficial.
Abstract: Dynamically Programmable Gate Arrays (DPGAs) are programmable arrays which allow the strategic reuse of limited resources. In so doing, DPGAs promise greater capacity, and in some cases higher performance, than conventional programmable device architectures where all array resources are dedicated to a single function for an entire operational epoch. This paper examines several usage patterns for DPGAs including temporal pipelining, utility functions, multiple function accommodation, and state-dependent logic. In the process, it offers insight into the application and technology space where DPGA-style reuse techniques are most beneficial.

130 citations

Journal ArticleDOI
TL;DR: This work reviews FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures, and investigates design flows and identifies the key challenges in making reconfigurable FPGAs systems easier to design.
Abstract: Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption.

122 citations