scispace - formally typeset
Search or ask a question
Author

Kjell Fuxe

Bio: Kjell Fuxe is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Dopamine & Dopamine receptor D2. The author has an hindex of 142, co-authored 1479 publications receiving 89846 citations. Previous affiliations of Kjell Fuxe include Uppsala University & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
Kjell Fuxe1
TL;DR: All the data strongly support the view that the specific central neurons giving rise to the terminals are monoaminergic, i.e. function by releasing their amines from the synaptic terminals, Consequently, DA, NA and 5-HT seem to be central neurotransmitters.
Abstract: With the help of the highly specific and sensitive fluorescence method of Falck and Hillarp together with the histochemical and pharmacological criteria for the specificity of the fluorescence reaction convincing evidence has been obtained that the fine, varicose nerve fibres observed in a vast number of regions in the mammalian central nervous system (mouse, hamster, rat, guineapig, rabbit, cat), which exhibit a green or yellow fluorescence, contain primary catecholamines and 5-HT respectively. Strong support has been given for the view that CA fibres showing a rapid recovery after administration of α-MMT contain DA, while those showing a slow recovery contain NA. There is little doubt that the monoamine-containing fibres in the brain represent the terminal ramifications of axons belonging to specific monoamine neurons and that they are true synaptic terminals. They seem to make their contacts via the varicosities which have extremely high concentrations of amines and in all probability represent the presynaptic structures, specialized for synthesis, storage and release of the amines. The central monoamine terminals thus have the same characteristic appearance as the adrenergic synaptic terminals in the peripheral nervous system. All the data strongly support the view that the specific central neurons giving rise to the terminals are monoaminergic, i.e. function by releasing their amines from the synaptic terminals. Consequently, DA, NA and 5-HT seem to be central neurotransmitters. Not only the median eminence but also the nuc. caudatus putamen, tuberculum olfactorium, nuc. accumbens and the small circumscribed areas medial to nuc. accumbens contain very fine (partly sublightmicroscopical) CA terminals. These areas react to treatment with reserpine, nialamide-dopa and α-MMT in the same way and since the nuc. caudatus putamen and tuberculum olfactorium are known to have a high DA content it seems likely that abundant DA terminals are accumulated in these special areas.

1,473 citations

Journal ArticleDOI
08 Jan 1998-Nature
TL;DR: In this article, the authors investigated the contribution of the high-affinity neuronal nicotinic acetylcholine receptor to the effects of nicotine on the mesolimbic dopamine system in mice lacking the β2 subunit of this receptor.
Abstract: Release of the neurotransmitter dopamine in the mesolimbic system of the brain mediates the reinforcing properties of several drugs of abuse, including nicotine1. Here we investigate the contribution of the high-affinity neuronal nicotinic acetylcholine receptor2 to the effects of nicotine on the mesolimbic dopamine system in mice lacking the β2 subunit of this receptor3. We found that nicotine stimulates dopamine release in the ventral striatum of wild-type mice but not in the ventral striatum of β2-mutant mice. Using patch-clamp recording, we show that mesencephalic dopaminergic neurons from mice without the β2 subunit no longer respond to nicotine, and that self-administration of nicotine is attenuated in these mutant mice. Our results strongly support the idea that the β2-containing neuronal nicotinic acetylcholine receptor is involved in mediating the reinforcing properties of nicotine.

1,240 citations

Journal ArticleDOI
TL;DR: A number of ascending monoamine neuron systems from the lower brain stem are demonstrated and mapped out by studying the anterograde and retrograde changes that occur in these neurons after various types of brain lesions.
Abstract: By means of sensitive and specific methods for histochemical and biochemical determination of dopamine (DA), noradrenaline (NA) and 5-hydroxytryptamine (5-HT) we have succeeded in demonstrating and mapping out a number of ascending monoamine neuron systems from the lower brain stem by studying the anterograde and retrograde changes that occur in these neurons after various types of brain lesions. In this way it has been possible to discover: 1) a large, uncrossed nigro-neostriatal DA neuron system; 2) a DA neuron system, arising from cell-bodies in the mesen-cephalon, ascending uncrossed in the medial forebrain bundle close to the nigro-neostriatal DA fibres, and innervating e.g. the tuberculum olfactorium and nuc. accumbens; 3) ascending NA neuron systems with cell-bodies situated mainly in the medulla oblongata and pons (locus coeruleus, formatio reticularis), and axons running uncrossed mainly in the medial forebrain bundle, innervating e.g. the limbic forebrain structures, the neocortex and the hypothalamus; 4) ascending 5-HT' neurons with cell-bodies situated mainly in the raphe nuclei of the mesencephalon (nuc. raphe dorsalis, nuc. raphe medianus), and axons running uncrossed mainly in the medial forebrain bundle, innervating e.g. the limbic forebrain structures and the hypothalamus. The effects observed on the amine levels of the neurons represent intraneuronal and not transsynaptic changes.

1,218 citations

Journal ArticleDOI
TL;DR: The hypothesis is given that the PNMT containing neurons represent A containing neurons, and that A may act as a neurotransmitter in the rat brain.

1,077 citations

Journal ArticleDOI
TL;DR: The most potent and specific neuroleptics seemed to influence mainly the brain DA mechanisms, both functionally and chemically.

1,010 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is shown that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible, suggesting a causal relation among epigenomicState, GR expression and the maternal effect on stress responses in the offspring.
Abstract: Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.

5,514 citations

Journal ArticleDOI
TL;DR: It is revealed that norepinephrine and dopamine are specifically localized in complex systems of neurons in the brain, a finding which lends support to the hypothesis that both amines may be neurotransmitters in the central nervous system.
Abstract: NOREPINEPHRINE is found in appreciable amounts in mammalian brain tissue. VOGT (1954) showed that this amine was unequally distributed in various regions of the cat brain, the highest concentrations being found in the hypothalamus. Similar findings were reported for other animal species (BERTLER and ROSENGREN, 1959a; MCGEER, MCGEER and WADA, 1963) and man (SANO, GAMO, KAKIMOTO, TANAGUCHI, TAKE~ADA and NISHINUMA, 1959). Dopamine is also present in the brain in comparable amounts to norepinephrine (MONTAGU, 1957 ; CARLSSON, LINDQVIST, MAGNUSSON and WALDECK, 1958) but with a different regional distribution, the highest concentrations being in the corpus striatum of both animals and man (BERTLER and ROSENGREN, 1959a; SANO et al., 1959; EHRINGER and HORNYKIEWICZ, 1960; BERTLER, 1961). The anatomical distribution of these two catecholamines in the brain was confirmed by the use of fluorescent histochemical techniques which allow a precise description of the cellular localization of the amines in brain tissue (CARLSSON, FALK and HILLARP, 1962; DAHLSTROM and FUXE, 1964; FUXE, 1965). These techniques revealed that norepinephrine and dopamine are specifically localized in complex systems of neurons in the brain, a finding which lends support to the hypothesis that both amines may be neurotransmitters in the central nervous system. The metabolism of catecholamines in the rat brain was studied by introducing small amounts of radioactive norepinephrine or dopamine directly into the lateral ventricle (MILHAUD and GLOWINSKI, 1962, 1963; GLOWINSKI, KOPIN and AXELROD, 1965; GLOWINSKI, IVERSEN and AXELROD, 1966). By this approach the blood-brain barrier to catecholamines can be circumvented, penetration of the radioactive catecholamines into the brain being allowed. The disposition of PHInorepinephrine in the whole brain indicates that [3H]norepinephrine introduced into the lateral ventricle of the brain mixes with the endogenous amine and can be used as a tracer to study the biochemical behaviour of norepinephrine in the brain (GLOWINSKI and AXELROD, 1966). PHIDopamine, which is also taken up and retained in the brain, is rapidly metabolized and converted to norepinephrine (GLOWINSKI et a!., 1966). The unequal regional distribution of the endogeneous catecholamines in the brain led us to undertake a study of the disposition of radioactive norepinephrine and dopamine in various brain regions after intraventricular injection. The regional

5,385 citations

Journal ArticleDOI
TL;DR: A model in which specific types of basal ganglia disorders are associated with changes in the function of subpopulations of striatal projection neurons is proposed, which suggests that the activity of sub Populations of Striatal projections neurons is differentially regulated by striatal afferents and that different striatal projections may mediate different aspects of motor control.

5,094 citations