Author
Kjell Sandros
Bio: Kjell Sandros is an academic researcher. The author has contributed to research in topics: Triplet state & Phosphorescence. The author has an hindex of 9, co-authored 12 publications receiving 752 citations.
Papers
More filters
236 citations
155 citations
99 citations
84 citations
63 citations
Cited by
More filters
6,396 citations
TL;DR: In this paper, the decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the exchange mechanism is treated theoretically, and the rate constant for the elementary process of energy transfer is taken to be of the Dexter form, const exp(−2R/L), where R is the donor-acceptor distance and L is a positive constant.
Abstract: The decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the exchange mechanism is treated theoretically. The rate constant for the elementary process of energy transfer is taken to be of the Dexter form, const exp(−2R/L), where R is the donor—acceptor distance and L is a positive constant. Calculations are made of the yield and decay time of the donor luminescence as functions of the acceptor concentration. The resulting relationship among the above quantities enables one to analyze experimental data in a quantitative manner, and thereby to obtain information about an intermolecular exchange interaction. As an example of such an analysis, Ermolaev's data on triplet—triplet transfer between some aromatic molecules are compared with our results, and very good agreement is found with a choice of the single parameter L.
2,125 citations
705 citations
TL;DR: In this paper, the intrinsic processes and mechanisms of proton transfer in relation to the nature of the intramolecular hydrogen bond ring are reviewed. But the authors focus on the intrinsic process and not the mechanisms of transfer.
Abstract: Excited-state intramolecular proton transfer reactions are reviewed. Special emphasis is given to the intrinsic processes and to the mechanisms of proton transfers in relation to the nature of the intramolecular hydrogen bond ring.
647 citations
TL;DR: It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3CDOM* can be achieved.
Abstract: Excited triplet states of chromophoric dissolved organic matter (3CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of 3CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize 3CDOM*. Information on 3CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing 3CDOM* using transient spectroscopic methods. Singlet molecular oxygen (1O2), which is a product of the reaction between 3CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of 3CDOM*. There are two major modes of reaction of 3CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3CDOM* can be achieved.
363 citations