scispace - formally typeset
Search or ask a question
Author

Klaas E. Stephan

Bio: Klaas E. Stephan is an academic researcher from University of Zurich. The author has contributed to research in topics: Bayesian inference & Functional magnetic resonance imaging. The author has an hindex of 91, co-authored 309 publications receiving 33765 citations. Previous affiliations of Klaas E. Stephan include Wellcome Trust & University of Düsseldorf.


Papers
More filters
Journal ArticleDOI
TL;DR: A new, MATLAB based toolbox for the SPM2 software package is introduced which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies and an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

3,911 citations

Journal ArticleDOI
26 Jan 2006-Nature
TL;DR: It is shown that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.
Abstract: The neural processes underlying empathy are a subject of intense interest within the social neurosciences. However, very little is known about how brain empathic responses are modulated by the affective link between individuals. We show here that empathic responses are modulated by learned preferences, a result consistent with economic models of social preferences. We engaged male and female volunteers in an economic game, in which two confederates played fairly or unfairly, and then measured brain activity with functional magnetic resonance imaging while these same volunteers observed the confederates receiving pain. Both sexes exhibited empathy-related activation in pain-related brain areas (fronto-insular and anterior cingulate cortices) towards fair players. However, these empathy-related responses were significantly reduced in males when observing an unfair person receiving pain. This effect was accompanied by increased activation in reward-related areas, correlated with an expressed desire for revenge. We conclude that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.

1,521 citations

Journal ArticleDOI
TL;DR: The hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers and is expected to prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG.

1,353 citations

Proceedings ArticleDOI
23 Aug 2010
TL;DR: It is shown that both problems can be overcome by replacing the conventional point estimate of accuracy by an estimate of the posterior distribution of the balanced accuracy.
Abstract: Evaluating the performance of a classification algorithm critically requires a measure of the degree to which unseen examples have been identified with their correct class labels. In practice, generalizability is frequently estimated by averaging the accuracies obtained on individual cross-validation folds. This procedure, however, is problematic in two ways. First, it does not allow for the derivation of meaningful confidence intervals. Second, it leads to an optimistic estimate when a biased classifier is tested on an imbalanced dataset. We show that both problems can be overcome by replacing the conventional point estimate of accuracy by an estimate of the posterior distribution of the balanced accuracy.

1,216 citations

Journal ArticleDOI
TL;DR: A review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both.

1,114 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations

01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations