scispace - formally typeset
Search or ask a question
Author

Klaas Wiersema

Other affiliations: University of Amsterdam
Bio: Klaas Wiersema is an academic researcher from University of Leicester. The author has contributed to research in topics: Gamma-ray burst & Galaxy. The author has an hindex of 38, co-authored 91 publications receiving 5591 citations. Previous affiliations of Klaas Wiersema include University of Amsterdam.


Papers
More filters
Journal ArticleDOI
TL;DR: A homogeneous X-rays analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23 is presented; this represents the largest sample ofX-ray GRB data published to date.
Abstract: We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2-3, we detail the methods which the Swift-XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift-XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4-6, we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.

1,613 citations

Journal ArticleDOI
TL;DR: The first indications of a class of long GRBs are presented, which form a bridge between the typical high-luminosity, high-redshift events and nearby low- luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.
Abstract: We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.

320 citations

Journal ArticleDOI
TL;DR: In this article, a large sample of GRB afterglow and prompt-emission data was used to compare the optical afterglows (or lack thereof) of Type I GRBs with those of Type II GRBs.
Abstract: We use a large sample of GRB afterglow and prompt-emission data (adding further GRB afterglow observations in this work) to compare the optical afterglows (or the lack thereof) of Type I GRBs with those of Type II GRBs. In comparison to the afterglows of Type II GRBs, we find that those of Type I GRBs have a lower average luminosity and show an intrinsic spread of luminosities at least as wide. From late and deep upper limits on the optical transients, we establish limits on the maximum optical luminosity of any associated supernova, confirming older works and adding new results. We use deep upper limits on Type I GRB optical afterglows to constrain the parameter space of possible mini-SN emission associated with a compact-object merger. Using the prompt emission data, we search for correlations between the parameters of the prompt emission and the late optical afterglow luminosities. We find tentative correlations between the bolometric isotropic energy release and the optical afterglow luminosity at a fixed time after trigger (positive), and between the host offset and the luminosity (negative), but no significant correlation between the isotropic energy release and the duration of the GRBs. We also discuss three anomalous GRBs, GRB 060505, GRB 060614, and GRB 060121, in the light of their optical afterglow luminosities. (Abridged)

269 citations

Journal ArticleDOI
TL;DR: In this paper, a large suite of multi-wavelength observations spanning from 300 s to 130 days after a gamma-ray burst (GRB 130427A) was presented, showing that the afterglow shows relatively simple, smooth evolution at all frequencies.
Abstract: We present multiwavelength observations of the afterglow of GRB 130427A, the brightest (in total fluence) gamma-ray burst (GRB) of the past 29 yr. Optical spectroscopy from Gemini-North reveals the redshift of the GRB to be z = 0.340, indicating that its unprecedented brightness is primarily the result of its relatively close proximity to Earth; the intrinsic luminosities of both the GRB and its afterglow are not extreme in comparison to other bright GRBs. We present a large suite of multiwavelength observations spanning from 300 s to 130 days after the burst and demonstrate that the afterglow shows relatively simple, smooth evolution at all frequencies, with no significant late-time flaring or rebrightening activity. The entire data set from 1 GHz to 10 GeV can be modeled as synchrotron emission from a combination of reverse and forward shocks in good agreement with the standard afterglow model, providing strong support to the applicability of the underlying theory and clarifying the nature of the GeV emission observed to last for minutes to hours following other very bright GRBs. A tenuous, wind-stratified circumburst density profile is required by the observations, suggesting a massive-star progenitor with a low mass-loss rate, perhaps due to low metallicity. GRBs similar in nature to GRB 130427A, inhabiting low-density media and exhibiting strong reverse shocks, are probably not uncommon but may have been difficult to recognize in the past owing to their relatively faint late-time radio emission; more such events should be found in abundance by the new generation of sensitive radio and millimeter instruments.

220 citations

Journal ArticleDOI
TL;DR: In this article, the afterglow of the gamma-ray burst GRB 060206 was analyzed with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium.
Abstract: Aims.We present early optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium. We also discuss how GRBs may be important complementary probes of cosmic chemical evolution. Methods.Absorption line study of the GRB afterglow spectrum. Results.We determine the redshift of the GRB to be z=4.04795±0.00020. Based on the measurement of the neutral hydrogen column density from the damped Lyman-alpha line and the metal content from weak, unsaturated S II lines we derive a metallicity of [S/H]=-0.84±0.10. This is one of the highest metallicities measured from absorption lines at z~4. From the very high column densities for the forbidden Si II*, O I*, and O I** lines we infer very high densities and low temperatures in the system. There is evidence for the presence of H2 molecules with log N(H_2)~17.0, translating into a molecular fraction of log{f}≈ -3.5 with f=2N(H2)/(2N(H2) + N(H I)). Even if GRBs are only formed by single massive stars with metallicities below ~0.3 Zo, they could still be fairly unbiased tracers of the bulk of the star formation at z>2. Hence, metallicities as derived for GRB 060206 here for a complete sample of GRB afterglows will directly show the distribution of metallicities for representative star-forming galaxies at these redshifts.

187 citations


Cited by
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
TL;DR: A homogeneous X-rays analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23 is presented; this represents the largest sample ofX-ray GRB data published to date.
Abstract: We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2-3, we detail the methods which the Swift-XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift-XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4-6, we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.

1,613 citations

Journal ArticleDOI
Edo Berger1
TL;DR: A review of nearly a decade of short gamma-ray bursts and their afterglow and host-galaxy observations is presented in this article, where the authors use this information to shed light on the nature and properties of their progenitors, the energy scale and collimation of the relativistic outflow, and the properties of the circumburst environments.
Abstract: Gamma-ray bursts (GRBs) display a bimodal duration distribution with a separation between the short- and long-duration bursts at about 2 s. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic core-collapse supernovae (SNe), their exclusive location in star-forming galaxies, and their strong correlation with bright UV regions within their host galaxies. Short GRBs have long been suspected on theoretical grounds to arise from compact object binary mergers (neutron star–neutron star or neutron star–black hole). The discovery of short GRB afterglows in 2005 provided the first insight into their energy scale and environments, as well as established a cosmological origin, a mix of host-galaxy types, and an absence of associated SNe. In this review, I summarize nearly a decade of short GRB afterglow and host-galaxy observations and use this information to shed light on the nature and properties of their progenitors, the energy scale and collimation of the relativistic outflow, and the properties of the circumburst environments. The preponderance of the evidence points to compact object binary progenitors, although some open questions remain. On the basis of this association, observations of short GRBs and their afterglows can shed light on the on- and off-axis electromagnetic counterparts of gravitational wave sources from the Advanced LIGO/Virgo experiments.

1,061 citations

Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

921 citations

Journal ArticleDOI
25 May 2006-Nature
TL;DR: In this article, the authors show that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. But they also show that the host galaxies of the long-drone bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae.
Abstract: When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way.

901 citations