scispace - formally typeset
Search or ask a question
Author

Klaudia Brix

Bio: Klaudia Brix is an academic researcher from Jacobs University Bremen. The author has contributed to research in topics: Cathepsin & Cathepsin B. The author has an hindex of 31, co-authored 109 publications receiving 3651 citations. Previous affiliations of Klaudia Brix include International University, Cambodia & Ludwig Maximilian University of Munich.


Papers
More filters
Journal ArticleDOI
09 Jan 2008-PLOS ONE
TL;DR: The data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types.
Abstract: Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3–4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-γ at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in α-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular α-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection.

390 citations

Journal ArticleDOI
TL;DR: The transport pathways directing cysteine cathepsins to their points of action are focused upon and understanding will provide a foundation for future research investigating the involvement of these peptidases with their substrates, inhibitors, and the intertwined proteolytic networks at the hubs of complex biological systems.

376 citations

Journal ArticleDOI
TL;DR: The combined results indicate a sufficiently low toxicity of cucurbit[n] as additives for medicinal and pharmaceutical use, and the bioadaptability of the compounds was further examined through in vivo studies on mice.
Abstract: Cucurbit[n]urils (CB[n]) are potential stabilizing, solubilizing, activating, and delivering agents for drugs. The toxicity of the macrocyclic host molecules cucurbit[7]uril (CB[7]), the most water-soluble homologue, as well as cucurbit[8]uril (CB[8]) has been evaluated. In vitro studies on cell cultures revealed an IC50 value of 0.53 ± 0.02 mM for CB[7], corresponding to around 620 mg of CB[7] per kg of cell material. Live-cell imaging studies performed on cells treated with subtoxic amounts of CB[7] showed no detrimental effects on the cellular integrity as assessed by mitochondrial activity. For CB[8], no significant cytotoxicity was observed within its solubility range. The bioadaptability of the compounds was further examined through in vivo studies on mice, where intravenous administration of CB[7] showed a maximum tolerated dosage of 250 mg kg−1, while oral administration of a CB[7]/CB[8] mixture showed a tolerance of up to 600 mg kg−1. The combined results indicate a sufficiently low toxicity to encourage further exploration of CB[n] as additives for medicinal and pharmaceutical use.

329 citations

Journal ArticleDOI
TL;DR: Results suggest that cathepsins B and L are involved in the solubilization of thyroglobulin from its covalently cross-linked storage form, indicating that utilization of luminal thyrogLobulin for thyroxine liberation is mediated by a combinatory action of cat hepsins K and L.
Abstract: Thyroid function depends on processing of the prohormone thyroglobulin by sequential proteolytic events. From in vitro analysis it is known that cysteine proteinases mediate proteolytic processing of thyroglobulin. Here, we have analyzed mice with deficiencies in cathepsins B, K, L, B and K, or K and L in order to investigate which of the cysteine proteinases is most important for proteolytic processing of thyroglobulin in vivo. Immunolabeling demonstrated a rearrangement of the endocytic system and a redistribution of extracellularly located enzymes in thyroids of cathepsin-deficient mice. Cathepsin L was upregulated in thyroids of cathepsin K(-/-) or B(-/-)/K(-/-) mice, suggesting a compensation of cathepsin L for cathepsin K deficiency. Impaired proteolysis resulted in the persistence of thyroglobulin in the thyroids of mice with deficiencies in cathepsin B or L. The typical multilayered appearance of extracellularly stored thyroglobulin was retained in cathepsin K(-/-) mice only. These results suggest that cathepsins B and L are involved in the solubilization of thyroglobulin from its covalently cross-linked storage form. Cathepsin K(-/-)/L(-/-) mice had significantly reduced levels of free thyroxine, indicating that utilization of luminal thyroglobulin for thyroxine liberation is mediated by a combinatory action of cathepsins K and L.

217 citations

Journal ArticleDOI
TL;DR: An assay to test for proteolytic processing of a natural substrate by cysteine cathepsins which accounts for redox potentials and pH values corresponding to the conditions in the extracellular space in comparison to those within endo-lysosomes of mammalian cells is developed.
Abstract: Cysteine cathepsins are known to primarily cleave their substrates at reducing and acidic conditions within endo-lysosomes. Nevertheless, they have also been linked to extracellular proteolysis, that is, in oxidizing and neutral environments. Although the impact of reducing or oxidizing conditions on proteolytic activity is a key to understand physiological protease functions, redox conditions have only rarely been considered in routine enzyme activity assays. Therefore we developed an assay to test for proteolytic processing of a natural substrate by cysteine cathepsins which accounts for redox potentials and pH values corresponding to the conditions in the extracellular space in comparison to those within endo-lysosomes of mammalian cells. The proteolytic potencies of cysteine cathepsins B, K, L and S towards thyroglobulin were analyzed under conditions simulating oxidizing versus reducing environments with neutral to acidic pH values. Thyroglobulin, the precursor molecule of thyroid hormones, was chosen as substrate, because it represents a natural target of cysteine cathepsins. Thyroglobulin processing involves thyroid hormone liberation which, under physiological circumstances, starts in the extracellular follicle lumen before being continued within endo-lysosomes. Our study shows that all cathepsins tested were capable of processing thyroglobulin at neutral and oxidizing conditions, although these are reportedly non-favorable for cysteine proteases. All analyzed cathepsins generated distinct fragments of thyroglobulin at extracellular versus endo-lysosomal conditions as demonstrated by SDS-PAGE followed by immunoblotting or N-terminal sequencing. Moreover, the thyroid hormone thyroxine was liberated by the action of cathepsin S at extracellular conditions, while cathepsins B, K and L worked most efficiently in this respect at endo-lysosomal conditions. The results revealed distinct cleavage patterns at all conditions analyzed, indicating compartment-specific processing of thyroglobulin by cysteine cathepsins. In particular, proteolytic activity of cathepsin S towards the substrate thyroglobulin can now be understood as instrumental for extracellular thyroid hormone liberation. Our study emphasizes that the proteolytic functions of cysteine cathepsins in the thyroid are not restricted to endo-lysosomes but include pivotal roles in extracellular substrate utilization. We conclude that understanding of the interplay and fine adjustment of protease networks in vivo is better approachable by simulating physiological conditions in protease activity assays.

142 citations


Cited by
More filters
01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: Having knowledge of transglutaminases is essential for understanding the aetiologies of diverse hereditary diseases of the blood and skin, and various autoimmune, inflammatory and degenerative conditions.
Abstract: Blood coagulation, skin-barrier formation, hardening of the fertilization envelope, extracellular-matrix assembly and other important biological processes are dependent on the rapid generation of covalent crosslinks between proteins. These reactions--which are catalysed by transglutaminases--endow the resulting supramolecular structure with extra rigidity and resistance against proteolytic degradation. Some transglutaminases function as molecular switches in cytoskeletal scaffolding and modulate protein-protein interactions. Having knowledge of these enzymes is essential for understanding the aetiologies of diverse hereditary diseases of the blood and skin, and various autoimmune, inflammatory and degenerative conditions.

1,385 citations

Journal ArticleDOI
TL;DR: This review summarizes recent progress in the understanding of the pathophysiology of atopic dermatitis and the implications for new management strategies.
Abstract: Atopic dermatitis is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers and is often the first step in the atopic march that results in asthma and allergic rhinitis. The clinical phenotype that characterizes atopic dermatitis is the product of interactions between susceptibility genes, the environment, defective skin barrier function, and immunologic responses. This review summarizes recent progress in our understanding of the pathophysiology of atopic dermatitis and the implications for new management strategies.

1,375 citations

Journal ArticleDOI

1,254 citations

Journal ArticleDOI
TL;DR: Direct proof for causal roles in tumour growth, migration, invasion, angiogenesis and metastasis has been shown by downregulating or ablating the expression of individual cysteine cathepsins in tumours and in transgenic mouse models of human cancer.
Abstract: Cysteine cathepsins are highly upregulated in a wide variety of cancers by mechanisms ranging from gene amplification to post-transcriptional modification. Their localization within intracellular lysosomes often changes during neoplastic progression, resulting in secretion of both inactive and active forms and association with binding partners on the tumour cell surface. Secreted, cell-surface and intracellular cysteine cathepsins function in proteolytic pathways that increase neoplastic progression. Direct proof for causal roles in tumour growth, migration, invasion, angiogenesis and metastasis has been shown by downregulating or ablating the expression of individual cysteine cathepsins in tumour cells and in transgenic mouse models of human cancer.

1,181 citations