scispace - formally typeset
Search or ask a question
Author

Klaus-Dieter Kreuer

Other affiliations: University of Trento
Bio: Klaus-Dieter Kreuer is an academic researcher from Max Planck Society. The author has contributed to research in topics: Conductivity & Proton. The author has an hindex of 58, co-authored 136 publications receiving 20249 citations. Previous affiliations of Klaus-Dieter Kreuer include University of Trento.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explain the transport properties and the swelling behaviour of NAFION and different sulfonated polyetherketones in terms of distinct differences on the microstructures and in the p K a of the acidic functional groups.

2,755 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the proton conductivity in materials and the elements of proton conduction mechanisms are discussed with a special emphasis on proton chemistry, including structural reorganization and diffusional motion of extended moieties.
Abstract: In this review the phenomenon of proton conductivity in materials and the elements of proton conduction mechanismsproton transfer, structural reorganization and diffusional motion of extended moietiesare discussed with special emphasis on proton chemistry. This is characterized by a strong proton localization within the valence electron density of electronegative species (e.g., oxygen, nitrogen) and self-localization effects due to solvent interactions which allows for significant proton diffusivities only when assisted by the dynamics of the proton environment in Grotthuss and vehicle type mechanisms. In systems with high proton density, proton/proton interactions lead to proton ordering below first-order phase transition rather than to coherent proton transfers along extended hydrogen-bond chains as is frequently suggested in textbooks of physical chemistry. There is no indication for significant proton tunneling in fast proton conduction phenomena for which almost barrierless proton transfer is suggest...

2,039 citations

Journal ArticleDOI
TL;DR: In this article, the structural and chemical parameters determining the formation and mobility of protonic defects in oxides are discussed, and the paramount role of high-molar volume, coordination numbers, and symmetry are emphasized.
Abstract: ▪ Abstract The structural and chemical parameters determining the formation and mobility of protonic defects in oxides are discussed, and the paramount role of high-molar volume, coordination numbers, and symmetry are emphasized. Symmetry also relates to the structural and chemical matching of the acceptor dopant. Y-doped BaZrO3-based oxides are demonstrated to combine high stability with high proton conductivity that exceeds the conductivity of the best oxide ion conductors at temperatures below about 700°C. The unfavorably high grain boundary impedances and brittleness of ceramics have been reduced by forming solid solutions with small amounts of BaCeO3, and an initial fuel cell test has demonstrated that proton-conducting electrolytes based on Y-doped BaZrO3 provide alternatives for separator materials in solid oxide fuel cells (SOFCs). These materials have the potential to operate at lower temperatures compared with those of conventional SOFCs, and the appearance of chemical water diffusion across the...

1,928 citations

Journal ArticleDOI
TL;DR: Theoretical Methodologies and Simulation Tools, and Poisson−Boltzmann Theory, and Phenomenology of Transport inProton-Conducting Materials for Fuel-CellApplications46664.2.1.
Abstract: 1. Introduction 46372. Theoretical Methodologies and Simulation Tools 46402.1. Ab Initio Quantum Chemistry 46412.2. Molecular Dynamics 46422.2.1. Classical Molecular Dynamics and MonteCarlo Simulations46432.2.2. Empirical Valence Bond Models 46442.2.3. Ab Initio Molecular Dynamics (AIMD) 46452.3. Poisson−Boltzmann Theory 46452.4. Nonequilibrium Statistical Mechanical IonTransport Modeling46462.5. Dielectric Saturation 46473. Transport Mechanisms 46483.1. Proton Conduction Mechanisms 46483.1.1. Homogeneous Media 46483.1.2. Heterogeneous Systems (ConfinementEffects)46553.2. Mechanisms of Parasitic Transport 46613.2.1. Solvated Acidic Polymers 46613.2.2. Oxides 46654. Phenomenology of Transport inProton-Conducting Materials for Fuel-CellApplications46664.1. Hydrated Acidic Polymers 46664.2. PBI−H

1,915 citations

Journal ArticleDOI
TL;DR: In this paper, some aspects of the simultaneous optimisation of material properties of proton conductors which are relevant for their use in electrochemical cells such as fuel cells, electrochemical reactors and sensors are discussed.

947 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Abstract: New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

8,157 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: Recent progress in the search and development of innovative alternative materials in the development of fuel-cell stack is summarized.
Abstract: Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.

6,938 citations

Journal ArticleDOI
TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Abstract: Equivalent weight (EW) is the number of grams of dry Nafion per mole of sulfonic acid groups when the material is in the acid form. This is an average EW in the sense that the comonomer sequence distribution (that is usually unknown to the investigator and largely unreported) gives a distribution in m in this formula. EW can be ascertained by acid-base titration, by analysis of atomic sulfur, and by FT-IR spectroscopy. The relationship between EW and m is EW ) 100m + 446 so that, for example, the side chains are separated by around 14 CF2 units in a membrane of 1100 EW. Common at the time of this writing are Nafion 117 films. The designation “117” refers to a film having 1100 EW and a nominal thickness of 0.007 in., although 115 and 112 films have also been available. Early-reported studies involved 1200 EW samples as well as special experimental varieties, some being rather thin. The equivalent weight is related to the property more often seen in the field of conventional ion exchange resins, namely the ion exchange capacity (IEC), by the equation IEC ) 1000/EW. The mention of the molecular weight of high equivalent weight (EW > 1000 g‚mol-1) Nafion is almost absent in the literature, although the range 105-106 Da has been mentioned. As this polymer does not form true solutions, the common methods of light scattering and gel permeation chromatography cannot be used to determine molecular weight as well as the size and shape of isolated, truly dissolved molecules. Studies of the structure of this polymer in solvent (albeit not a true solution) will be mentioned in the scattering section of this review. It should be noted that Curtin et al. performed size exclusion chromatography determinations of the molecular weight distribution in Nafion aqueous dispersions after they were heated to high temperatures (230, 250, and 270 °C).1 Before heating, there was a high molecular weight shoulder on a bimodal distribution, due to molecular aggregates, but this shoulder disappeared upon heating, which indicated that the aggregates were disrupted. The peaks for the monomodal distribution for the heated samples were all located at molecular weights slightly higher than 105 g‚mol-1. Also, light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure. Nafion ionomers are usually derived from the thermoplastic -SO2F precursor form that can be extruded into sheets of required thickness. Strong interactions between the ionic groups are an obstacle to melt processing. This precursor does not possess the clustered morphology that will be of great concern in this article but does possess Teflon-like crystallinity which persists when the sulfonyl fluoride form is converted to, for example, the K+ form by reacting it with KOH in water and DMSO. Thereafter, the -SO3H form is achieved by soaking the film in a sufficiently concentrated aqueous acid solution. Extrusion of the sulfonyl fluoride precursor can cause microstructural orientation in the machine direction, * Address correspondence to either author. Phone: 601-266-5595/ 4480. Fax: 601-266-5635. E-mail: Kenneth.Mauritz@usm.edu; RBMoore@usm.edu. 4535 Chem. Rev. 2004, 104, 4535−4585

4,130 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain the transport properties and the swelling behaviour of NAFION and different sulfonated polyetherketones in terms of distinct differences on the microstructures and in the p K a of the acidic functional groups.

2,755 citations