scispace - formally typeset
Search or ask a question
Author

Klaus Kern

Bio: Klaus Kern is an academic researcher from Max Planck Society. The author has contributed to research in topics: Scanning tunneling microscope & Graphene. The author has an hindex of 108, co-authored 725 publications receiving 46913 citations. Previous affiliations of Klaus Kern include MacDiarmid Institute for Advanced Materials and Nanotechnology & Ruhr University Bochum.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.
Abstract: Individual graphene oxide sheets subjected to chemical reduction were electrically characterized as a function of temperature and external electric fields. The fully reduced monolayers exhibited conductivities ranging between 0.05 and 2 S/cm and field effect mobilities of 2−200 cm2/Vs at room temperature. Temperature-dependent electrical measurements and Raman spectroscopic investigations suggest that charge transport occurs via variable range hopping between intact graphene islands with sizes on the order of several nanometers. Furthermore, the comparative study of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.

2,322 citations

Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: This work presents an autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces that combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed.
Abstract: The fabrication methods of the microelectronics industry have been refined to produce ever smaller devices, but will soon reach their fundamental limits. A promising alternative route to even smaller functional systems with nanometre dimensions is the autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces. This approach combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed. Once the mechanisms controlling the self-ordering phenomena are fully understood, the self-assembly and growth processes can be steered to create a wide range of surface nanostructures from metallic, semiconducting and molecular materials.

2,013 citations

Journal ArticleDOI
TL;DR: The layers are found to comprise defect-free graphene areas with sizes of a few nanometers interspersed with defect areas dominated by clustered pentagons and heptagons, which makes all carbon atoms in these defective areas undetectable by spectroscopic techniques.
Abstract: Using high resolution transmission electron microscopy, we identify the specific atomic scale features in chemically derived graphene monolayers that originate from the oxidation-reduction treatment of graphene. The layers are found to comprise defect-free graphene areas with sizes of a few nanometers interspersed with defect areas dominated by clustered pentagons and heptagons. Interestingly, all carbon atoms in these defective areas are bonded to three neighbors maintaining a planar sp(2)-configuration, which makes them undetectable by spectroscopic techniques. Furthermore, we observe that they introduce significant in-plane distortions and strain in the surrounding lattice.

1,077 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the field emission properties of carbon nanotube (CNT) films by a scanning anode FE apparatus, revealing a strong dependence on the density and morphology of the CNT deposit.
Abstract: The investigation of the field emission (FE) properties of carbon nanotube (CNT) films by a scanning anode FE apparatus, reveals a strong dependence on the density and morphology of the CNT deposit. Large differences between the microscopic and macroscopic current and emission site densities are observed, and explained in terms of a variation of the field enhancement factor β. As a consequence, the emitted current density can be optimized by tuning the density of CNTs. Films with medium densities (on the order of 107 emitters/cm2, according to electrostatic calculations) show the highest emitted current densities.

945 citations

Journal ArticleDOI
16 May 2003-Science
TL;DR: The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface and the results confirm theoretical predictions and are of fundamental value to understanding how magnetic an isotropy develops in finite-sized magnetic particles.
Abstract: The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface. Single cobalt atoms deposited onto platinum (111) are found to have a magnetic anisotropy energy of 9 millielectron volts per atom arising from the combination of unquenched orbital moments (1.1 Bohr magnetons) and strong spin-orbit coupling induced by the platinum substrate. By assembling cobalt nanoparticles containing up to 40 atoms, the magnetic anisotropy energy is further shown to be dependent on single-atom coordination changes. These results confirm theoretical predictions and are of fundamental value to understanding how magnetic anisotropy develops in finite-sized magnetic particles.

887 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
22 Jul 2010-ACS Nano
TL;DR: An improved method for the preparation of graphene oxide (GO) is described, finding that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process.
Abstract: An improved method for the preparation of graphene oxide (GO) is described. Currently, Hummers’ method (KMnO4, NaNO3, H2SO4) is the most common method used for preparing graphene oxide. We have found that excluding the NaNO3, increasing the amount of KMnO4, and performing the reaction in a 9:1 mixture of H2SO4/H3PO4 improves the efficiency of the oxidation process. This improved method provides a greater amount of hydrophilic oxidized graphene material as compared to Hummers’ method or Hummers’ method with additional KMnO4. Moreover, even though the GO produced by our method is more oxidized than that prepared by Hummers’ method, when both are reduced in the same chamber with hydrazine, chemically converted graphene (CCG) produced from this new method is equivalent in its electrical conductivity. In contrast to Hummers’ method, the new method does not generate toxic gas and the temperature is easily controlled. This improved synthesis of GO may be important for large-scale production of GO as well as the ...

9,812 citations