scispace - formally typeset
Search or ask a question
Author

Klaus M. Hahn

Bio: Klaus M. Hahn is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: RHOA & CDC42. The author has an hindex of 61, co-authored 210 publications receiving 15343 citations. Previous affiliations of Klaus M. Hahn include University of California, Berkeley & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
03 Sep 2009-Nature
TL;DR: A new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells, which was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles.
Abstract: The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.

982 citations

Journal ArticleDOI
03 Sep 2009-Nature
TL;DR: GTPase coordination in mouse embryonic fibroblasts is examined both through simultaneous visualization of two GTPase biosensors and using a ‘computational multiplexing’ approach capable of defining the relationships between multiple protein activities visualized in separate experiments, finding that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 μm behind the edge with a delay of 40 s.
Abstract: The GTPases Rac1, RhoA and Cdc42 act together to control cytoskeleton dynamics. Recent biosensor studies have shown that all three GTPases are activated at the front of migrating cells, and biochemical evidence suggests that they may regulate one another: Cdc42 can activate Rac1 (ref. 8), and Rac1 and RhoA are mutually inhibitory. However, their spatiotemporal coordination, at the seconds and single-micrometre dimensions typical of individual protrusion events, remains unknown. Here we examine GTPase coordination in mouse embryonic fibroblasts both through simultaneous visualization of two GTPase biosensors and using a 'computational multiplexing' approach capable of defining the relationships between multiple protein activities visualized in separate experiments. We found that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 micro-m behind the edge with a delay of 40 s. This indicates that Rac1 and RhoA operate antagonistically through spatial separation and precise timing, and that RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 activate pathways implicated in reinforcement and stabilization of newly expanded protrusions.

978 citations

Journal ArticleDOI
20 Apr 2006-Nature
TL;DR: Fluorescent biosensor data show that different extracellular cues induce distinct patterns of RhoA signalling during membrane protrusion, potentially because PDGF strongly activates Rac, which has previously been shown to antagonize RHoA activity.
Abstract: Rho family GTPases regulate the actin and adhesion dynamics that control cell migration. Current models postulate that Rac promotes membrane protrusion at the leading edge and that RhoA regulates contractility in the cell body1,2. However, there is evidence that RhoA also regulates membrane protrusion3,4. Here we use a fluorescent biosensor, based on a novel design preserving reversible membrane interactions, to visualize the spatiotemporal dynamics of RhoA activity during cell migration. In randomly migrating cells, RhoA activity is concentrated in a sharp band directly at the edge of protrusions. It is observed sporadically in retracting tails, and is low in the cell body. RhoA activity is also associated with peripheral ruffles and pinocytic vesicles, but not with dorsal ruffles induced by platelet-derived growth factor (PDGF). In contrast to randomly migrating cells, PDGF-induced membrane protrusions have low RhoA activity, potentially because PDGF strongly activates Rac, which has previously been shown to antagonize RhoA activity5,6. Our data therefore show that different extracellular cues induce distinct patterns of RhoA signalling during membrane protrusion.

833 citations

Journal ArticleDOI
TL;DR: Inhibitors of Na+/H+ exchange proteins block macropinocytosis by lowering the pH near the plasma membrane, which in turn inhibits actin remodeling by Rho family GTPases.
Abstract: Macropinocytosis is differentiated from other types of endocytosis by its unique susceptibility to inhibitors of Na+/H+ exchange. Yet, the functional relationship between Na+/H+ exchange and macropinosome formation remains obscure. In A431 cells, stimulation by EGF simultaneously activated macropinocytosis and Na+/H+ exchange, elevating cytosolic pH and stimulating Na+ influx. Remarkably, although inhibition of Na+/H+ exchange by amiloride or HOE-694 obliterated macropinocytosis, neither cytosolic alkalinization nor Na+ influx were required. Instead, using novel probes of submembranous pH, we detected the accumulation of metabolically generated acid at sites of macropinocytosis, an effect counteracted by Na+/H+ exchange and greatly magnified when amiloride or HOE-694 were present. The acidification observed in the presence of the inhibitors did not alter receptor engagement or phosphorylation, nor did it significantly depress phosphatidylinositol-3-kinase stimulation. However, activation of the GTPases that promote actin remodelling was found to be exquisitely sensitive to the submembranous pH. This sensitivity confers to macropinocytosis its unique susceptibility to inhibitors of Na+/H+ exchange.

746 citations

Journal ArticleDOI
13 Oct 2000-Science
TL;DR: A method called FLAIR (fluorescence activation indicator for Rho proteins) was developed to quantify the spatio-temporal dynamics of the Rac1 nucleotide state in living cells, revealing precise spatial control of growth factor-induced Rac activation, in membrane ruffles and in a gradient of activation at the leading edge of motile cells.
Abstract: Signaling proteins are thought to be tightly regulated spatially and temporally in order to generate specific and localized effects. For Rac and other small guanosine triphosphatases, binding to guanosine triphosphate leads to interaction with downstream targets and regulates subcellular localization. A method called FLAIR (fluorescence activation indicator for Rho proteins) was developed to quantify the spatio-temporal dynamics of the Rac1 nucleotide state in living cells. FLAIR revealed precise spatial control of growth factor-induced Rac activation, in membrane ruffles and in a gradient of activation at the leading edge of motile cells. FLAIR exemplifies a generally applicable approach for examining spatio-temporal control of protein activity.

703 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In just three years, the green fluorescent protein from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology.
Abstract: In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.

5,954 citations

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Abstract: Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells-including fibroblasts, myocytes, neurons, and other cell types-sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actinmyosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

5,889 citations

Journal ArticleDOI
05 Dec 2003-Science
TL;DR: The mechanisms underlying the major steps of migration and the signaling pathways that regulate them are described, and recent advances investigating the nature of polarity in migrating cells and the pathways that establish it are outlined.
Abstract: Cell migration is a highly integrated multistep process that orchestrates embryonic morphogenesis; contributes to tissue repair and regeneration; and drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. The migrating cell is highly polarized with complex regulatory pathways that spatially and temporally integrate its component processes. This review describes the mechanisms underlying the major steps of migration and the signaling pathways that regulate them, and outlines recent advances investigating the nature of polarity in migrating cells and the pathways that establish it.

4,839 citations