scispace - formally typeset
Search or ask a question
Author

Klaus Mezger

Bio: Klaus Mezger is an academic researcher from University of Bern. The author has contributed to research in topics: Zircon & Metamorphism. The author has an hindex of 73, co-authored 276 publications receiving 18970 citations. Previous affiliations of Klaus Mezger include University of Michigan & Max Planck Society.


Papers
More filters
Journal ArticleDOI
27 Jul 2001-Science
TL;DR: The existence of strongly unradiogenic hafnium in Early Archean and Hadean zircons implies that enriched crustal reservoirs existed on Earth by 4.3 billion years ago and persisted for 200 million years or more, and current models of early terrestrial differentiation need revision.
Abstract: Well-defined constants of radioactive decay are the cornerstone of geochronology and the use of radiogenic isotopes to constrain the time scales and mechanisms of planetary differentiation. Four new determinations of the lutetium-176 decay constant (lambda176Lu) made by calibration against the uranium-lead decay schemes yield a mean value of 1.865 +/- 0.015 x 10(-11) year(-1), in agreement with the two most recent decay-counting experiments. Lutetium-hafnium ages that are based on the previously used lambda176Lu of 1.93 x 10(-11) to 1.94 x 10(-11) year(-1) are thus approximately 4% too young, and the initial hafnium isotope compositions of some of Earth's oldest minerals and rocks become less radiogenic relative to bulk undifferentiated Earth when calculated using the new decay constant. The existence of strongly unradiogenic hafnium in Early Archean and Hadean zircons implies that enriched crustal reservoirs existed on Earth by 4.3 billion years ago and persisted for 200 million years or more. Hence, current models of early terrestrial differentiation need revision.

2,195 citations

Journal ArticleDOI
29 Aug 2002-Nature
TL;DR: It is concluded that core formation in the terrestrial planets and the formation of the Moon must have occurred during the first ∼30 million years of the life of the Solar System.
Abstract: The timescales and mechanisms for the formation and chemical differentiation of the planets can be quantified using the radioactive decay of short-lived isotopes. Of these, the (182)Hf-to-(182)W decay is ideally suited for dating core formation in planetary bodies. In an earlier study, the W isotope composition of the Earth's mantle was used to infer that core formation was late (> or = 60 million years after the beginning of the Solar System) and that accretion was a protracted process. The correct interpretation of Hf-W data depends, however, on accurate knowledge of the initial abundance of (182)Hf in the Solar System and the W isotope composition of chondritic meteorites. Here we report Hf-W data for carbonaceous and H chondrite meteorites that lead to timescales of accretion and core formation significantly different from those calculated previously. The revised ages for Vesta, Mars and Earth indicate rapid accretion, and show that the timescale for core formation decreases with decreasing size of the planet. We conclude that core formation in the terrestrial planets and the formation of the Moon must have occurred during the first approximately 30 million years of the life of the Solar System.

706 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Hf-W systematics of meteoritic and planetary samples to provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system.

572 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that Pb-diffusion in the pristine zircon lattice is insignificant up to temperatures of at least 1000°C, and that lower intercept ages are significant only if they are defined by zircons with low U-content (<100 p.p.m.) or if confirmed by other geochronological methods.
Abstract: The most widely used technique for the determination of high precision mineral growth ages in igneous and metamorphic rocks is dating of zircons with the U-Pb method. The interpretation of these ages, particularly in metamorphic settings, is hampered by an incomplete understanding of the common phenomenon of partial Pb-loss in zircon. In principle, this Pb-loss may occur in four very different ways: diffusion in metamict zircon, diffusion in pristine zircon, leaching from metamict zircon and recrystallization of metamict zircon. Here it is argued that, under conditions common in the continental crust, Pb-loss is only possible in partially to strongly metamict zircons. Pb-diffusion in the pristine zircon lattice is insignificant up to temperatures of at least 1000 °C. Pb-loss is only possible if the zircons experienced a time interval below their annealing temperature of about 600–650 °C, because only below this temperature can the lattice damage through α-decay and spontaneous fission accumulate. Zircons that remain above this temperature do not lose Pb by diffusion and will stay closed systems. Complete resetting of the U-Pb system in zircon under crustal conditions is only possible through dissolution and reprecipitation of zircon. Partial resetting results from recrystallization, leaching or diffusion in metamict zircon. As a consequence, special care has to be taken to interpret lower intercepts on concordia diagrams defined by discordant U-Pb data. Lower intercept ages may be significant only if they are defined by zircons with low U-content (<100 p.p.m.) or if confirmed by other geochronological methods. In addition, the accuracy of the lower intercept should be confirmed by abrading the zircon fractions that define the discordia.

527 citations

Journal ArticleDOI
TL;DR: In this article, a single-column separation procedure for purification of Hf and Lu by ion exchange using Eichrom® Ln-Spec resin was presented, allowing measurements of Zr/Nb with a precision of better than ±5% (2σ).
Abstract: [1] The application of multiple collector inductively coupled plasma source mass spectrometry (MC-ICPMS) to 176Lu-176Hf and 92Nb-92Zr chronometry has been hampered by complex Zr-Hf purification procedures that involve multiple ion exchange column steps. This study presents a single-column separation procedure for purification of Hf and Lu by ion exchange using Eichrom® Ln-Spec resin. The sample is loaded in pure HCl, and element yields are not dependent on the sample matrix. For 92Nb-92Zr chronometry, a one-column procedure for purification of Zr using Biorad® AG-1-× 8 resin is described. Titanium and Mo are completely removed from the Zr, thus enabling accurate 92Zr measurements. Zirconium and Nb are quantitatively separated from rock samples using Eichrom Ln-Spec resin, allowing measurements of Zr/Nb with a precision of better than ±5% (2σ). The Ln-Spec and anion resin procedures may be combined into a three-column method for separation of Zr-Nb, Hf, Ta, and Lu from rock samples. For the first time, this procedure permits combined isotope dilution measurements of Nb/Ta, Zr/Hf, and Lu/Hf using a mixed 94Zr-176Lu-180Hf-180Ta tracer. Analytical protocols for Zr and Hf isotope measurements using the Micromass Isoprobe, a second generation, single-focusing MC-ICPMS, are reported. Using the Isoprobe at Munster, 2σ external precisions of ±0.5ɛ units for Hf and Zr isotope measurements are achieved using as little as 5 ng (Hf) to 10 ng (Zr) of the element. The 176Hf/177Hf and Lu/Hf for rock reference materials agree well with other published MC-ICPMS and thermal ionization mass spectrometry (TIMS) data.

505 citations


Cited by
More filters
Book ChapterDOI
TL;DR: In this paper, the present-day composition of the continental crust, the methods employed to derive these estimates, and the implications of continental crust composition for the formation of the continents, Earth differentiation, and its geochemical inventories are discussed.
Abstract: This chapter reviews the present-day composition of the continental crust, the methods employed to derive these estimates, and the implications of the continental crust composition for the formation of the continents, Earth differentiation, and its geochemical inventories. We review the composition of the upper, middle, and lower continental crust. We then examine the bulk crust composition and the implications of this composition for crust generation and modification processes. Finally, we compare the Earth's crust with those of the other terrestrial planets in our solar system and speculate about what unique processes on Earth have given rise to this unusual crustal distribution.

7,831 citations

Journal ArticleDOI
TL;DR: A survey of the dimensions and composition of the present continental crust is given in this paper, where it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons).
Abstract: A survey is given of the dimensions and composition of the present continental crust. The abundances of immobile elements in sedimentary rocks are used to establish upper crustal composition. The present upper crustal composition is attributed largely to intracrustal differentiation resulting in the production of granites senso lato. Underplating of the crust by ponded basaltic magmas is probably a major source of heat for intracrustal differentiation. The contrast between the present upper crustal composition and that of the Archean upper crust is emphasized. The nature of the lower crust is examined in the light of evidence from granulites and xenoliths of lower crustal origin. It appears that the protoliths of most granulite facies exposures are more representative of upper or middle crust and that the lower crust has a much more basic composition than the exposed upper crust. There is growing consensus that the crust grows episodically, and it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons, or 2.7 Ga). There appears to be a relationship between episodes of continental growth and differentiation and supercontinental cycles, probably dating back at least to the late Archean. However, such cycles do not explain the contrast in crustal compositions between Archean and post-Archean. Mechanisms for deriving the crust from the mantle are considered, including the role of present-day plate tectonics and subduction zones. It is concluded that a somewhat different tectonic regime operated in the Archean and was responsible for the growth of much of the continental crust. Archean tonalites and trond-hjemites may have resulted from slab melting and/or from melting of the Archean mantle wedge but at low pressures and high temperatures analogous to modern boninites. In contrast, most andesites and subduction-related rocks, now the main contributors to crustal growth, are derived ultimately from the mantle wedge above subduction zones. The cause of the contrast between the processes responsible for Archean and post-Archean crustal growth is attributed to faster subduction of younger, hotter oceanic crust in the Archean (ultimately due to higher heat flow) compared with subduction of older, cooler oceanic crust in more recent times. A brief survey of the causes of continental breakup reveals that neither plume nor lithospheric stretching is a totally satisfactory explanation. Speculations are presented about crustal development before 4000 m.y. ago. The terrestrial continental crust appears to be unique compared with crusts on other planets and satellites in the solar system, ultimately a consequence of the abundant free water on the Earth.

3,656 citations

Journal ArticleDOI
TL;DR: In this paper, an internal standard-independent calibration strategy for LA-ICP-MS analysis of anhydrous minerals and glasses was described, where the ablation yield correction factor (AYCF) was used to correct the matrix-dependent absolute amount of materials ablated during each run.

2,995 citations

Journal ArticleDOI
TL;DR: In this article, a three-layer crust consisting of upper, middle, and lower crust is divided into type sections associated with different tectonic provinces, in which P wave velocities increase progressively with depth and there is a large variation in average P wave velocity of the lower crust between different type sections.
Abstract: Geophysical, petrological, and geochemical data provide important clues about the composition of the deep continental crust. On the basis of seismic refraction data, we divide the crust into type sections associated with different tectonic provinces. Each shows a three-layer crust consisting of upper, middle, and lower crust, in which P wave velocities increase progressively with depth. There is large variation in average P wave velocity of the lower crust between different type sections, but in general, lower crustal velocities are high (>6.9 km s−1) and average middle crustal velocities range between 6.3 and 6.7 km s−1. Heat-producing elements decrease with depth in the crust owing to their depletion in felsic rocks caused by granulite facies metamorphism and an increase in the proportion of mafic rocks with depth. Studies of crustal cross sections show that in Archean regions, 50–85% of the heat flowing from the surface of the Earth is generated within the crust. Granulite terrains that experienced isobaric cooling are representative of middle or lower crust and have higher proportions of mafic rocks than do granulite terrains that experienced isothermal decompression. The latter are probably not representative of the deep crust but are merely upper crustal rocks that have been through an orogenic cycle. Granulite xenoliths provide some of the deepest samples of the continental crust and are composed largely of mafic rock types. Ultrasonic velocity measurements for a wide variety of deep crustal rocks provide a link between crustal velocity and lithology. Meta-igneous felsic, intermediate and mafic granulite, and amphibolite facies rocks are distinguishable on the basis of P and S wave velocities, but metamorphosed shales (metapelites) have velocities that overlap the complete velocity range displayed by the meta-igneous lithologies. The high heat production of metapelites, coupled with their generally limited volumetric extent in granulite terrains and xenoliths, suggests they constitute only a small proportion of the lower crust. Using average P wave velocities derived from the crustal type sections, the estimated areal extent of each type of crust, and the average compositions of different types of granulites, we estimate the average lower and middle crust composition. The lower crust is composed of rocks in the granulite facies and is lithologically heterogeneous. Its average composition is mafic, approaching that of a primitive mantle-derived basalt, but it may range to intermediate bulk compositions in some regions. The middle crust is composed of rocks in the amphibolite facies and is intermediate in bulk composition, containing significant K, Th, and U contents. Average continental crust is intermediate in composition and contains a significant proportion of the bulk silicate Earth's incompatible trace element budget (35–55% of Rb, Ba, K, Pb, Th, and U).

2,909 citations