scispace - formally typeset
Search or ask a question
Author

Klaus Mueller‐Dethlefs

Bio: Klaus Mueller‐Dethlefs is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 107 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems.
Abstract: Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

1,345 citations

Journal ArticleDOI
TL;DR: It is found that non-covalent interactions between hydrated alkali metal cations M(+)(H(2)O)(x) and adsorbed OH (OH(ad)) species increase in the same order as the hydration energies of the corresponding cations, which suggests that the clusters block the platinum active sites for electrocatalytic reactions.
Abstract: The classic models of metal electrode-electrolyte interfaces generally focus on either covalent interactions between adsorbates and solid surfaces or on long-range electrolyte-metal electrostatic interactions. Here we demonstrate that these traditional models are insufficient. To understand electrocatalytic trends in the oxygen reduction reaction (ORR), the hydrogen oxidation reaction (HOR) and the oxidation of methanol on platinum surfaces in alkaline electrolytes, non-covalent interactions must be considered. We find that non-covalent interactions between hydrated alkali metal cations M(+)(H(2)O)(x) and adsorbed OH (OH(ad)) species increase in the same order as the hydration energies of the corresponding cations (Li(+) >> Na(+) > K(+) > Cs(+)) and also correspond to an increase in the concentration of OH(ad)-M(+)(H(2)O)(x) clusters at the interface. These trends are inversely proportional to the activities of the ORR, the HOR and the oxidation of methanol on platinum (Cs(+) > K(+) > Na(+) >> Li(+)), which suggests that the clusters block the platinum active sites for electrocatalytic reactions.

503 citations

Journal ArticleDOI
TL;DR: Gold, silver and platinum nanoparticles are discussed, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents.
Abstract: Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size- and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies.

329 citations

Journal ArticleDOI
TL;DR: Data sets of benchmark interaction energies in noncovalent complexes are an important tool for quantifying the accuracy of computational methods used in this field, as well as for the development of new computational approaches, and their construction and accuracy are discussed.
Abstract: Data sets of benchmark interaction energies in noncovalent complexes are an important tool for quantifying the accuracy of computational methods used in this field, as well as for the development of new computational approaches. This review is intended as a guide to conscious use of these data sets. We discuss their construction and accuracy, list the data sets available in the literature, and demonstrate their application to validation and parametrization of quantum-mechanical computational methods. In practical model systems, the benchmark interaction energies are usually obtained using composite CCSD(T)/CBS schemes. To use these results as a benchmark, their accuracy should be estimated first. We analyze the errors of this methodology with respect to both the approximations involved and the basis set size. We list the most prominent data sets covering various aspects of the field, from general ones to sets focusing on specific types of interactions or systems. The benchmark data are then used to valida...

328 citations