scispace - formally typeset
Search or ask a question
Author

Klaus Müller

Bio: Klaus Müller is an academic researcher from University of Münster. The author has contributed to research in topics: HaCaT & Dithranol. The author has an hindex of 41, co-authored 177 publications receiving 17598 citations. Previous affiliations of Klaus Müller include University of Regensburg & Free University of Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Ba−La−Cu−O system, with the composition BaxLa5−xCu5O5(3−y) have been prepared in polycrystalline form, and samples with x=1 and 0.75,y>0, annealed below 900°C under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound.
Abstract: Metallic, oxygen-deficient compounds in the Ba−La−Cu−O system, with the composition BaxLa5−xCu5O5(3−y) have been prepared in polycrystalline form. Samples withx=1 and 0.75,y>0, annealed below 900°C under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally an abrupt decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 30 K range. It is markedly reduced by high current densities. Thus, it results partially from the percolative nature, bute possibly also from 2D superconducting fluctuations of double perovskite layers of one of the phases present.

10,272 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the paraelectric phase stabilizes below 4 K with a very high dielectric constant and the crossover from classical to quantum behavior on lowering the temperature is discussed, and the coupling of the ferroelectric mode to acoustic ones is important.
Abstract: The dielectric constants ${\ensuremath{\epsilon}}_{〈110〉}$ and their change with uniaxial $〈1\overline{1}0〉$ stress in monodomain $〈001〉$SrTi${\mathrm{O}}_{3}$ samples have been measured as a function of temperature. Between 4 K and 0.3 K these quantities are independent of temperature. In one sample $\ensuremath{\epsilon}(T)$ was measured to 0.035 K and found to be constant. This proves the quantum-mechanical stabilization of the paraelectric phase below 4 K with a very high dielectric constant $\ensuremath{\epsilon}$. The crossover from classical to quantum behavior on lowering the temperature is discussed, and it is shown that the coupling of the ferroelectric mode to acoustic ones is important. The $\ensuremath{\epsilon}(T)$ dependence is compared to earlier and recent theories. The former, yielding a coth ($\frac{\ensuremath{\hbar}\ensuremath{\Omega}}{\mathrm{kT}}$) term, are found to be inadequate for the crossover region. A recent biquadratic ferroelectric mode-coupling theory fits the data better.

1,429 citations

Journal ArticleDOI
TL;DR: In this article, the diamagnetism observed in the zero-field--cooled state is considerably larger than under field cooling, indicating the existence of a superconductive glass state.
Abstract: Susceptibility and magnetic-moment measurements from 1.9 to 35 K in magnetic fields up to 1.5 T in powder samples of La/sub 2/CuO/sub 4-//sub y/:Ba are reported. The diamagnetism observed in the zero-field--cooled state is considerably larger than under field cooling. The former is metastable like the magnetic moment induced after switching the field off. These observations indicate the existence of a superconductive glass state.

871 citations

Journal ArticleDOI
TL;DR: This mini-review pays particular attention to the most common classes of small-molecule constituents of lichens, from both the chemical viewpoint and with regard to possible therapeutic implications, which will provide impetus for identifying novel lead-compounds with therapeutic potential and poses new challenges for medicinal chemistry.
Abstract: Lichen metabolites exert a wide variety of biological actions including antibiotic, antimycobacterial, antiviral, antiinflammatory, analgesic, antipyretic, antiproliferative and cytotoxic effects. Even though these manifold activities of lichen metabolites have now been recognized, their therapeutic potential has not yet been fully explored and thus remains pharmaceutically unexploited. In this mini-review, particular attention is paid to the most common classes of small-molecule constituents of lichens, from both the chemical viewpoint and with regard to possible therapeutic implications. In particular, aliphatic acids, pulvinic acid derivatives, depsides and depsidones, dibenzofuans, anthraquinones, naphthoquinones as well as epidithiopiperazinediones are described. An improved access to these lichen substances in drug discovery high-throughput screening programs will provide impetus for identifying novel lead-compounds with therapeutic potential and poses new challenges for medicinal chemistry.

359 citations

Journal ArticleDOI
TL;DR: A nonresonant microwave absorption has been observed at fields below the thermodynamic critical field in the new copper oxide superconductors, associated with flux slippage and allows an estimation of the average area of the uniform phase in the superconducting glass state.
Abstract: A nonresonant microwave absorption has been observed at fields below the thermodynamic critical field, H/sub c//sub 1//sup (//sup T//sup )/, in the new copper oxide superconductors. This is associated with flux slippage and allows an estimation of the average area of the uniform phase in the superconducting glass state.

253 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is reported that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site and exhibits a trapezoid shape dependence on the F- content.
Abstract: We report that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site. The transition temperature (Tc) exhibits a trapezoid shape dependence on the F- content, with the highest Tc of ∼26 K at ∼11 atom %.

6,643 citations

Journal ArticleDOI
TL;DR: A stable and reproducible superconductivity transition between 80 and 93 K has been unambiguously observed both resistively and magnetically in a new Y-Ba-Cu-O compound system at ambient pressure.
Abstract: A stable and reproducible superconductivity transition between 80 and 93 K has been unambiguously observed both resistively and magnetically in a new Y-Ba-Cu-O compound system at ambient pressure. An estimated upper critical field H c2(0) between 80 and 180 T was obtained.

5,965 citations

Journal ArticleDOI
06 Mar 1987-Science
TL;DR: The oxide superconductors, particularly those recently discovered that are based on La2CuO4, have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties.
Abstract: The oxide superconductors, particularly those recently discovered that are based on La2CuO4have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought “resonating-valence-bond” state or “quantum spin liquid” hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.

5,409 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
29 Jan 2004-Nature
TL;DR: A model interface is examined between two insulating perovskite oxides—LaAlO3 and SrTiO3—in which the termination layer at the interface is controlled on an atomic scale, presenting a broad opportunity to tailor low-dimensional charge states by atomically engineered oxide heteroepitaxy.
Abstract: Polarity discontinuities at the interfaces between different crystalline materials (heterointerfaces) can lead to nontrivial local atomic and electronic structure, owing to the presence of dangling bonds and incomplete atomic coordinations. These discontinuities often arise in naturally layered oxide structures, such as the superconducting copper oxides and ferroelectric titanates, as well as in artificial thin film oxide heterostructures such as manganite tunnel junctions. If polarity discontinuities can be atomically controlled, unusual charge states that are inaccessible in bulk materials could be realized. Here we have examined a model interface between two insulating perovskite oxides--LaAlO3 and SrTiO3--in which we control the termination layer at the interface on an atomic scale. In the simple ionic limit, this interface presents an extra half electron or hole per two-dimensional unit cell, depending on the structure of the interface. The hole-doped interface is found to be insulating, whereas the electron-doped interface is conducting, with extremely high carrier mobility exceeding 10,000 cm2 V(-1) s(-1). At low temperature, dramatic magnetoresistance oscillations periodic with the inverse magnetic field are observed, indicating quantum transport. These results present a broad opportunity to tailor low-dimensional charge states by atomically engineered oxide heteroepitaxy.

3,977 citations