scispace - formally typeset
Search or ask a question
Author

Klaus-Robert Müller

Other affiliations: Korea University, University of Tokyo, Fraunhofer Society  ...read more
Bio: Klaus-Robert Müller is an academic researcher from Technical University of Berlin. The author has contributed to research in topics: Artificial neural network & Support vector machine. The author has an hindex of 129, co-authored 764 publications receiving 79391 citations. Previous affiliations of Klaus-Robert Müller include Korea University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: To what extent co-adaptive learning enables significant BCI control for completely novice users, as well as for those who could not achieve control with a conventional SMR-based BCI, are investigated.
Abstract: All brain–computer interface (BCI) groups that have published results of studies involving a large number of users performing BCI control based on the voluntary modulation of sensorimotor rhythms (SMR) report that BCI control could not be achieved by a non-negligible number of subjects (estimated 20% to 25%). This failure of the BCI system to read the intention of the user is one of the greatest problems and challenges in BCI research. There are two main causes for this problem in SMR-based BCI systems: either no idle SMR is observed over motor areas of the user, or this idle rhythm is not modulated during motor imagery, resulting in a classification performance lower than 70% (criterion level) that renders the control of a BCI application (like a speller) difficult or impossible. Previously, we introduced the concept of machine learning based co-adaptive calibration, which provided substantially improved performance for a variety of users. Here, we use a similar approach and investigate to what extent co-adaptive learning enables significant BCI control for completely novice users, as well as for those who could not achieve control with a conventional SMR-based BCI.

161 citations

Journal ArticleDOI
TL;DR: A critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design are reviewed.
Abstract: Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.

158 citations

Proceedings Article
29 Nov 1999
TL;DR: This work assumes linear combinations of reflectance spectra with some additive normal sensor noise and derives a probabilistic MAP framework for analyzing hyperspectral data and develops an algorithm that can be understood as constrained independent component analysis (ICA).
Abstract: In hyperspectral imagery one pixel typically consists of a mixture of the reflectance spectra of several materials, where the mixture coefficients correspond to the abundances of the constituting materials. We assume linear combinations of reflectance spectra with some additive normal sensor noise and derive a probabilistic MAP framework for analyzing hyperspectral data. As the material reflectance characteristics are not know a priori, we face the problem of unsupervised linear unmixing. The incorporation of different prior information (e.g. positivity and normalization of the abundances) naturally leads to a family of interesting algorithms, for example in the noise-free case yielding an algorithm that can be understood as constrained independent component analysis (ICA). Simulations underline the usefulness of our theory.

158 citations

01 Jan 2007
TL;DR: Methods and techniques that take advantage of modern graphics hardware for real-time tracking and recognition of feature-points and the generation of feature vectors from input images in the various stages are presented.
Abstract: With the addition of free programmable components to modern graphics hardware, graphics processing units (GPUs) become increasingly interesting for general purpose computations, especially due to utilizing parallel buffer processing. In this paper we present methods and techniques that take advantage of modern graphics hardware for real-time tracking and recognition of feature-points. The focus lies on the generation of feature vectors from input images in the various stages. For the generation of feature-vectors the Scale Invariant Feature Transform (SIFT) method [Low04a] is used due to its high stability against rotation, scale and lighting condition changes of the processed images. We present results of the various stages for feature vector generation of our GPU implementation and compare it to the CPU version of the SIFT algorithm. The approach works well on Geforce6 series graphics board and above and takes advantage of new hardware features, e.g. dynamic branching and multiple render targets (MRT) in the fragment processor [KF05]. With the presented methods feature-tracking with real time frame rates can be achieved on the GPU and meanwhile the CPU can be used for other tasks.

157 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations