scispace - formally typeset
Search or ask a question
Author

Klaus-Robert Müller

Other affiliations: Korea University, University of Tokyo, Fraunhofer Society  ...read more
Bio: Klaus-Robert Müller is an academic researcher from Technical University of Berlin. The author has contributed to research in topics: Artificial neural network & Support vector machine. The author has an hindex of 129, co-authored 764 publications receiving 79391 citations. Previous affiliations of Klaus-Robert Müller include Korea University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art machine learning methods employed to assay and improve the accuracy of the genome annotation of the nematode Caenorhabditis elegans are concluded to be greatly enhanced using modern machine learning technology.
Abstract: For modern biology, precise genome annotations are of prime importance, as they allow the accurate definition of genic regions. We employ state-of-the-art machine learning methods to assay and improve the accuracy of the genome annotation of the nematode Caenorhabditis elegans. The proposed machine learning system is trained to recognize exons and introns on the unspliced mRNA, utilizing recent advances in support vector machines and label sequence learning. In 87% (coding and untranslated regions) and 95% (coding regions only) of all genes tested in several out-of-sample evaluations, our method correctly identified all exons and introns. Notably, only 37% and 50%, respectively, of the presently unconfirmed genes in the C. elegans genome annotation agree with our predictions, thus we hypothesize that a sizable fraction of those genes are not correctly annotated. A retrospective evaluation of the Wormbase WS120 annotation [1] of C. elegans reveals that splice form predictions on unconfirmed genes in WS120 are inaccurate in about 18% of the considered cases, while our predictions deviate from the truth only in 10%–13%. We experimentally analyzed 20 controversial genes on which our system and the annotation disagree, confirming the superiority of our predictions. While our method correctly predicted 75% of those cases, the standard annotation was never completely correct. The accuracy of our system is further corroborated by a comparison with two other recently proposed systems that can be used for splice form prediction: SNAP and ExonHunter. We conclude that the genome annotation of C. elegans and other organisms can be greatly enhanced using modern machine learning technology.

82 citations

Proceedings ArticleDOI
01 Aug 2016
TL;DR: This paper applies layer-wise relevance propagation for the first time to natural language processing (NLP) and uses it to explain the predictions of a convolutional neural network trained on a topic categorization task.
Abstract: Layer-wise relevance propagation (LRP) is a recently proposed technique for explaining predictions of complex non-linear classifiers in terms of input variables. In this paper, we apply LRP for the first time to natural language processing (NLP). More precisely, we use it to explain the predictions of a convolutional neural network (CNN) trained on a topic categorization task. Our analysis highlights which words are relevant for a specific prediction of the CNN. We compare our technique to standard sensitivity analysis, both qualitatively and quantitatively, using a “word deleting” perturbation experiment, a PCA analysis, and various visualizations. All experiments validate the suitability of LRP for explaining the CNN predictions, which is also in line with results reported in recent image classification studies.

82 citations

Journal ArticleDOI
TL;DR: A successful application of modern machine learning technology, namely Support Vector Machines, to the problem of assessing the 'drug-likeness' of a chemical from a given set of descriptors of the substance is reported about.
Abstract: In this article we report about a successful application of modern machine learning technology, namely Support Vector Machines, to the problem of assessing the ‘drug-likeness' of a chemical from a given set of descriptors of the substance. We were able to drastically improve the recent result by Byvatov et al. (2003) on this task and achieved an error rate of about 7% on unseen compounds using Support Vector Machines. We see a very high potential of such machine learning techniques for a variety of computational chemistry problems that occur in the drug discovery and drug design process.

80 citations

Journal ArticleDOI
19 May 2015
TL;DR: A number of data fusion techniques for BCI along with hybrid methods forBCI that have recently emerged are reviewed, with a focus on sensorimotor rhythm-based BCIs.
Abstract: Brain–computer interfaces (BCIs) are successfully used in scientific, therapeutic and other applications. Remaining challenges are among others a low signal-to-noise ratio of neural signals, lack of robustness for decoders in the presence of inter-trial and inter-subject variability, time constraints on the calibration phase and the use of BCIs outside a controlled lab environment. Recent advances in BCI research addressed these issues by novel combinations of complementary analysis as well as recording techniques, so called hybrid BCIs . In this paper, we review a number of data fusion techniques for BCI along with hybrid methods for BCI that have recently emerged. Our focus will be on sensorimotor rhythm-based BCIs. We will give an overview of the three main lines of research in this area, integration of complementary features of neural activation, integration of multiple previous sessions and of multiple subjects, and show how these techniques can be used to enhance modern BCI systems.

80 citations

Journal ArticleDOI
TL;DR: DeepLight outperforms conventional approaches of uni- and multivariate fMRI analysis in decoding the cognitive states and in identifying the physiologically appropriate brain regions associated with these states, and is demonstrated to have the versatility to apply to a large fMRI dataset of the Human Connectome Project.
Abstract: The application of deep learning (DL) models to neuroimaging data poses several challenges, due to the high dimensionality, low sample size and complex temporo-spatial dependency structure of these data. Even further, DL models often act as as black boxes, impeding insight into the association of cognitive state and brain activity. To approach these challenges, we introduce the DeepLight framework, which utilizes long short-term memory (LSTM) based DL models to analyze whole-brain functional Magnetic Resonance Imaging (fMRI) data. To decode a cognitive state (e.g., seeing the image of a house), DeepLight separates an fMRI volume into a sequence of axial brain slices, which is then sequentially processed by an LSTM. To maintain interpretability, DeepLight adapts the layer-wise relevance propagation (LRP) technique. Thereby, decomposing its decoding decision into the contributions of the single input voxels to this decision. Importantly, the decomposition is performed on the level of single fMRI volumes, enabling DeepLight to study the associations between cognitive state and brain activity on several levels of data granularity, from the level of the group down to the level of single time points. To demonstrate the versatility of DeepLight, we apply it to a large fMRI dataset of the Human Connectome Project. We show that DeepLight outperforms conventional approaches of uni- and multivariate fMRI analysis in decoding the cognitive states and in identifying the physiologically appropriate brain regions associated with these states. We further demonstrate DeepLight’s ability to study the fine-grained temporo-spatial variability of brain activity over sequences of single fMRI samples.

80 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations