scispace - formally typeset
Search or ask a question
Author

Klaus-Robert Müller

Other affiliations: Korea University, University of Tokyo, Fraunhofer Society  ...read more
Bio: Klaus-Robert Müller is an academic researcher from Technical University of Berlin. The author has contributed to research in topics: Artificial neural network & Support vector machine. The author has an hindex of 129, co-authored 764 publications receiving 79391 citations. Previous affiliations of Klaus-Robert Müller include Korea University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the uniqueness of individual gait patterns in clinical biomechanics using DNNs was studied using Layer-Wise Relevance Propagation (LRP) technique, which reliably demonstrates which variables at what time windows of the gait cycle are most relevant for the characterisation of gait pattern from a certain individual.
Abstract: Machine learning (ML) techniques such as (deep) artificial neural networks (DNN) are solving very successfully a plethora of tasks and provide new predictive models for complex physical, chemical, biological and social systems. However, in most cases this comes with the disadvantage of acting as a black box, rarely providing information about what made them arrive at a particular prediction. This black box aspect of ML techniques can be problematic especially in medical diagnoses, so far hampering a clinical acceptance. The present paper studies the uniqueness of individual gait patterns in clinical biomechanics using DNNs. By attributing portions of the model predictions back to the input variables (ground reaction forces and full-body joint angles), the Layer-Wise Relevance Propagation (LRP) technique reliably demonstrates which variables at what time windows of the gait cycle are most relevant for the characterisation of gait patterns from a certain individual. By measuring the time-resolved contribution of each input variable to the prediction of ML techniques such as DNNs, our method describes the first general framework that enables to understand and interpret non-linear ML methods in (biomechanical) gait analysis and thereby supplies a powerful tool for analysis, diagnosis and treatment of human gait.

54 citations

Journal ArticleDOI
TL;DR: The results show that neural assessment of video quality based on SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to methods based on the P3 component.
Abstract: Objective. Recent studies exploit the neural signal recorded via electroencephalography (EEG) to get a more objective measurement of perceived video quality. Most of these studies capitalize on the event-related potential component P3. We follow an alternative approach to the measurement problem investigating steady state visual evoked potentials (SSVEPs) as EEG correlates of quality changes. Unlike the P3, SSVEPs are directly linked to the sensory processing of the stimuli and do not require long experimental sessions to get a sufficient signal-to-noise ratio. Furthermore, we investigate the correlation of the EEG-based measures with the outcome of the standard behavioral assessment. Approach. As stimulus material, we used six gray-level natural images in six levels of degradation that were created by coding the images with the HM10.0 test model of the high efficiency video coding (H.265/MPEG-HEVC) using six different compression rates. The degraded images were presented in rapid alternation with the original images. In this setting, the presence of SSVEPs is a neural marker that objectively indicates the neural processing of the quality changes that are induced by the video coding. We tested two different machine learning methods to classify such potentials based on the modulation of the brain rhythm and on time-locked components, respectively. Main results. Results show high accuracies in classification of the neural signal over the threshold of the perception of the quality changes. Accuracies significantly correlate with the mean opinion scores given by the participants in the standardized degradation category rating quality assessment of the same group of images. Significance. The results show that neural assessment of video quality based on SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to methods based on the P3 component.

54 citations

Journal ArticleDOI
TL;DR: A new algorithm building an optimal dyadic decision tree (ODT) that combines guaranteed performance in the learning theoretical sense and optimal search from the algorithmic point of view and improves performance over classical approaches such as CART/C4.5.
Abstract: We introduce a new algorithm building an optimal dyadic decision tree (ODT). The method combines guaranteed performance in the learning theoretical sense and optimal search from the algorithmic point of view. Furthermore it inherits the explanatory power of tree approaches, while improving performance over classical approaches such as CART/C4.5, as shown on experiments on artificial and benchmark data.

54 citations

Journal ArticleDOI
TL;DR: The results of this study suggest that pharmacophoric patterns of synthetic bioactive compounds can be traced back to natural products, and this will be useful for “de-orphanizing” the natural bioactive agent.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are nuclear proteins that act as transcription factors. They represent a validated drug target class involved in lipid and glucose metabolism as well as inflammatory response regulation. We combined state-of-the-art machine learning methods including Gaussian process (GP) regression, multiple kernel learning, the ISOAK molecular graph kernel, and a novel loss function to virtually screen a large compound collection for potential PPAR activators; 15 compounds were tested in a cellular reporter gene assay. The most potent PPARg-selective hit (EC50 = 10 0.2 mm) is a derivative of the natural product truxillic acid. Truxillic acid derivatives are known to be anti-inflammatory agents, potentially due to PPARg activation. Our study underscores the usefulness of modern machine learning algorithms for finding potent bioactive compounds and presents an example of scaffold-hopping from synthetic compounds to natural products. We thus motivate virtual screening of natural product collections as a source of novel lead compounds. The results of our study suggest that pharmacophoric patterns of synthetic bioactive compounds can be traced back to natural products, and this will be useful for “de-orphanizing” the natural bioactive agent. PPARs are present in three known isoforms: PPARa, PPARb (d), and PPARg, with different expression patterns according to their function. PPAR activation leads to an increased expression of key enzymes and proteins involved in the uptake and metabolism of lipids and glucose. Unsaturated fatty acids and eicosanoids such as linoleic acid and arachidonic acid are physiological PPAR activators. Owing to their central role in glucose and lipid homeostasis, PPARs represent attractive drug targets for the treatment of diabetes and dyslipidemia. Glitazones (thiazolidinediones) such as pioglitazone and rosiglitazone act as selective activators of PPARg and are used as therapeutics for diabetes mellitus type 2. In addition to synthetic activators, herbs are traditionally used for treatment of metabolic disorders, and some herbal ingredients have been identified as PPARg activators, for example, carnosol and carnosic acid, as well as several terpenoids and flavonoids. 12] We used several machine learning methods, with synthetic PPAR agonists as input, to find common pharmacophoric patterns for virtual screening in both synthetic and natural product derived substances. We focused on GP models, which originate from Bayesian statistics. Their original applications in cheminformatics were aimed at predicting aqueous solubility, blood–brain barrier penetration, hERG (human ethergo-go-related gene) inhibition, 15] and metabolic stability. A particular advantage of GPs is that they provide error estimates with their predictions. In GP modeling of molecular properties, one defines a positive definite kernel function to model molecular similarity. Compound information enters GP models only via this function, so relevant (context-dependent) physicochemical properties must be captured. This is done by computing molecular descriptors (physicochemical property vectors), or by graph kernels that are defined directly on the molecular graph. From a family of functions that are potentially able to model the underlying structure–activity relationship (“prior”), only functions that agree with the data are retained (Figure 1). The weighted average of the retained functions (“posterior”) acts as predictor, and its variance as an estimate of the confidence in the predic-

53 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations